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a b s t r a c t

In this paper, an implicit sequential algorithm is presented for solving coupled Lyapunov matrix equa-
tions of continuous-time Markovian jump linear systems. First, some existing iterative algorithms which
can be utilized to solve the coupled Lyapunov matrix equations are reviewed and discussed. Next, based
on the existing parallel iterative algorithm, an implicit sequential algorithm is proposed by using the lat-
est updated information. The proposed algorithm fills the current gap of implicit algorithms for solving
continuous coupled Lyapunov matrix equations. It is shown that the proposed algorithmwith zero initial
conditions can monotonically converge to the unique positive definite solutions of the coupled Lyapunov
matrix equations if the associated Markovian jump system is stochastically stable. Moreover, a necessary
and sufficient condition is established for the proposed algorithm to be convergent. The algorithm pre-
sented in this paper has much better convergence performance than other existing iterative algorithms
and requires less storage capacity. Finally, a numerical example is given to show the effectiveness of the
proposed algorithm.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Markovian jump systems are a family of multi-modal systems
and the mutual transitions between these modes are governed
by a Markov chain. This kind of systems can be used to
model some dynamic systems subject to abrupt changes in their
structure and parameters due to, for instance, component failure
or repairs, abrupt environment changes and changing subsystem
interconnections (Ji & Chizeck, 1990). They have a wide range
of applications, such as network control systems (Zhang, Shi, &
Wang, 2013) and fault tolerant control systems (Li, Gao, Shi, &
Zhao, 2014). Due to this, considerable attention has been attracted
from many researchers. For example, the filter design problem of
Markovian jump systems with time delays was investigated in Xu,
Chen, and Lam (2003) and the stabilization problem of Markovian
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jump systems was considered in Xiong and Lam (2006). In Ji
and Chizeck (1990), stochastic controllability and stabilizability
were studied for continuous-timeMarkovian jump linear systems.
In Mariton (1988), the moment stability was studied for this kind
of systems. Stochastic stability of jump linear systems and the
relationship among various moment and sample path stability
were studied in Feng, Loparo, Ji, and Chizeck (1992). It was shown
in Mariton (1988) and Feng et al. (1992) that both the stochastic
and moment stability can be characterized by the existence of
unique positive definite solutions of the coupled Lyapunov matrix
equations (CLMEs). In addition, a CLMEs based criterion was given
in Ji and Chizeck (1990) for the stochastic controllability.

The aforementioned facts imply that the CLMEs play an im-
portant role in stability analysis and stabilizing controller design.
Therefore,much effort has beenmade to develop some approaches
for solving them. A direct and natural way is to use the Kronecker
product to transform them intomatrix–vector linear equations (Jo-
dar & Mariton, 1987). Obviously, this approach suffers from high
dimensions. Another efficient way to solve coupled matrix equa-
tions is through iteration. In Borno (1995), a parallel iterative al-
gorithm was proposed for solving the continuous CLMEs. It was
pointed out in Borno (1995) that the sequences generated by the al-
gorithm are monotonically increasing, and upper bounded. In this
algorithm, some independent standard Lyapunovmatrix equations
need to be solved at each iteration step. The parallel iterative algo-
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rithmwas then extended in Borno andGajic (1995) to solve the dis-
crete CLMEs with the requirement of zero initial conditions. It was
proven in Wang, Lam, Wei, and Chen (2008) that the iteration se-
quences generated by the algorithm in Borno and Gajic (1995) are
also convergentwithout this requirement. InWang et al. (2008), an
iterative algorithmwas constructed for solving the discrete CLMEs.
In this algorithm, the iteration sequence converges if the spectral
radius of an augmented matrix is less than one. From an optimiza-
tion point of view, a gradient based iterative algorithm was devel-
oped in Zhou, Lam, andDuan (2008) for solving the discrete CLMEs.
In Zhou et al. (2008), a necessary and sufficient condition guar-
anteeing the convergence of the algorithm was established, and
the optimal step size maximizing the convergence rate of the al-
gorithm was given explicitly. This gradient based iterative algo-
rithm was then extended in Zhou, Duan, and Li (2009) to solve
coupled matrix equations, including the continuous CLMEs as a
special case. Based on the positive operator theory, two iterative
algorithms were established in Li, Zhou, Lam, andWang (2011) for
both discrete and continuous Lyapunov equations associated with
Itô stochastic systems with Markovian jumps, which include the
Markovian jump systems as a special case. Recently, by taking ad-
vantage of the algorithms in Borno andGajic (1995) andWang et al.
(2008) and using the updated variables in the current step for es-
timation of other variables, two types of iterative algorithms were
proposed inWu and Duan (2015) for solving the discrete CLMEs. It
was shown that the algorithms in Wu and Duan (2015) converge
much faster than those in Borno and Gajic (1995) and Wang et al.
(2008).

On solving the discrete CLMEs, the parallel iterative algorithm
in Borno and Gajic (1995) is explicit. In Wang et al. (2008), an im-
plicit iterative algorithm motivated by the solution of single dis-
crete Lyapunov equation was presented. Based on the algorithms
in Borno and Gajic (1995) and Wang et al. (2008), some explicit
and implicit iterative algorithms were developed by using the lat-
est updated information inWu and Duan (2015). On the other hand,
for solving the continuous CLMEs, the parallel iterative algorithm
in Borno (1995) is implicit without using the latest updated in-
formation. Therefore, in this brief communique, we will develop
an implicit iterative algorithm for solving the continuous CLMEs
by using the latest updated information proposed in Wu and Duan
(2015) and fill the current gap for continuous-time Markovian
jump systems.

For the iterative algorithm in Borno (1995), the iteration se-
quence is updated by only using the information in the last step.
However, in the current step some variables have been updated
before the estimates of the other variables are calculated. In fact,
these updated information for some variables can be utilized ef-
fectively for other variables to be updated. Based on this idea, we
will investigate the iterative algorithm for solving the continuous
CLMEs by revising the iterative algorithm in Borno (1995). This
paper can be viewed as an implicit investigation for continuous-
time systems corresponding to the results of the implicit algorithm
in Wu and Duan (2015) for discrete-time systems. We should ad-
dress here that the CLMEs for continuous-time and discrete-time
systems are quite different in general and the techniques used in
proofs for many dual version results are also different due to the
representation difference. The essential idea of the latest updated
information in this paper is based on Wu and Duan (2015).

Throughout this paper, for a matrix A ∈ Rn×n, AT, ρ (A),
σmax(A) and σmin(A) denote its transpose, spectral radius, maximal
singular value and minimal singular value, respectively; A >
0 (A < 0, respectively) represents that A is positive definite
(negative definite, respectively). For two matrices M and N with
the same dimension, M < N means M − N < 0. ∥·∥ denotes
the Frobenius norm. ⊗ represents the Kronecker product of two
matrices. E represents the mathematical expectation. In stands

for the identity matrix of size n × n. The vectorization operator
vec is defined as vec(A) =


aT1 aT2 aT3 · · · aTn

T where A =
a1 a2 · · · an


.

2. Previous results

Consider the following continuous-timeMarkovian jump linear
system
ẋ (t) = Ar(t)x (t) , (1)
where x(t) ∈ Rn is the state of the system, Ar(t) ∈ Rn×n is the
mode-dependent system matrix, and r (t) is a Markov random
process that takes values in a finite discrete setN = {1, 2, . . . ,N}.
The dynamics of the probability distribution of the Markov chain
are determined by the differential equation π̇ (t) = π (t) P , where
π is an N-dimensional row vector of unconditional probabilities,
and P is the transition rate matrix given by


pij

N×N . The matrix P

has the properties that pii < 0, pij ≥ 0, for i ≠ j, and
N

j=1 pij = 0,
for i ∈ N . For the system (1), let the initial condition be x(0) = x0
and r(0) = r0, then the definition of stochastic stability can be
given as follows.

Definition 1 (Feng et al., 1992). The Markovian jump system (1) is
said to be stochastically stable if for any initial condition x0 ∈ Rn

and r0 ∈ N , there holds

E


∞

0
∥x(t)∥2

| x0, r0


< ∞. (2)

The coupled Lyapunovmatrix equations (CLMEs) corresponding to
the system (1) are

AT
i Ki + KiAi + Qi +

N
j=1

pijKj = 0, Qi > 0, i ∈ N , (3)

where i indicates that the system is in the i-th mode, namely,
Ar(t) = Ai. It has been shown in Feng et al. (1992) that the
Markovian jump system (1) is stochastically stable if and only if
the CLMEs (3) have positive definite solutions K i, i ∈ N , for any
positive definite matrices Qi, i ∈ N . On the other hand, the CLMEs
associated with the discrete-time Markovian jump system can be
given by

AT
i


N
j=1

pijKj


Ai − Ki + Qi = 0, Qi > 0, i ∈ N . (4)

Remark 1. Due to the representation difference, the techniques
used to establish the iterative solutions of (3) and (4) are quite
different. For (4), as the matrices Ki, i ∈ N to be determined
appear alone, it is easy to give the explicit iteration directly (see
Wu and Duan (2015) for details). In contrast, regarding (3), Ki,
i ∈ N appear with a matrix in their left or right sides. As a result,
it is not an easy task to present their explicit iterative solutions. In
addition, there are few elegant results reported in the literature
on the explicit solutions of (3). By using the Kronecker product,
the explicit iterative solutions of (3) were obtained in Jodar
and Mariton (1987) and Zhang and Ding (2014). However, such
solutions suffer from computational difficulties due to high
dimensionality of the associated matrices. Another method to get
the explicit iterative solutions of (3) was provided in Li et al.
(2011) by using an auxiliary transformation. In Li et al. (2011),
the continuous stochastic Lyapunov equations were transformed
into some equivalent discrete Lyapunov equations. A drawback
of this approach is that it requires additional computation. One
can observe that the investigation of the CLMEs for continuous-
time systems is far behind from that for discrete-time systems. To
the best knowledge of the authors, the iterative solutions of the
continuous CLMEs have not been well investigated.
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