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a b s t r a c t

In this paper, we propose a stochastic scheduling strategy for estimating the states of N discrete-time
linear time invariant (DTLTI) dynamic systems, where only one system can be observed by the sensor
at each time instant due to practical resource constraints. The idea of our stochastic strategy is that a
system is randomly selected for observation at each time instant according to a pre-assigned probability
distribution. We aim to find the optimal pre-assigned probability in order to minimize the maximal
estimate error covariance among dynamic systems. We first show that under mild conditions, the
stochastic scheduling problem gives an upper bound on the performance of the optimal sensor selection
problem, notoriously difficult to solve. We next relax the stochastic scheduling problem into a tractable
suboptimal quasi-convex form. We then show that the new problem can be decomposed into coupled
small convex optimization problems, and it can be solved in a distributed fashion. Finally, for scheduling
implementation, we propose centralized and distributed deterministic scheduling strategies based on the
optimal stochastic solution and provide simulation examples.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the problem of scheduling the ob-
servations of independent targets in order to minimize the track-
ing error covariance, but when only one target can be observed
at a given time. This problem captures many interesting track-
ing/estimation application problems. As a motivational example,
consider N independent dynamic targets, spatially distributed in
an area, that need to be tracked (estimated) by a single (mobile)
camera sensor. The camera has limited sensing range and therefore
it needs to zoom in on, or be in proximity of, one of the targets for
obtaining measurements. Under the assumption that the switch-
ing time among the targets is negligible, then we need to find a
visiting sequence in order to minimize the estimate error.

Another case is when a set of N mobile surveillance devices
need to track N geographically-separated targets, where each
target is tracked by one assigned surveillance device. However, the
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sensing/measuring channel can only be used by one estimator at
the time (e.g. sonar range-finding Cremean et al., 2002). Then, we
need to design a scheduling sequence of surveillance devices for
accurate tracking.

1.1. Related work and contributions of this paper

There has been considerable research effort devoted to the
study of sensor selection problems, including sensor scheduling
(Alriksson & Rantzer, 2005; Bitar, Baeyens, & Poolla, 2009; Gupta,
Chung, Hassibi, & Murray, 2006; Joshi & Boyd, 2009; Li & Elia,
2011; Liang, Tang, & Zhu, 2007; Lin & Wang, 2013; Ny, Feron, &
Dahleh, 2011; Shi, Johansson, & Murray, 2007; Srivastava, Plarre,
& Bullo, 2011; Tiwari, Jun, Jeffcoat, & Murray, 2005; Vasanthi
& Annadurai, 2006) and sensor coverage (Acar & Choset, 2002;
Choset, 2001; Cortes, 2010; Cortes, Martinez, Karatas, & Bullo,
2004; Gupta et al., 2006; Hussein & Stipanovi, 2007). This trend has
been inspired by the significance and wide applications of sensor
networks. As the literature is vast, we list a few results which
are relevant to this paper. The sensor scheduling problem mainly
arises from minimization of two relevant costs: sensor network
energy consumption and estimate error. On the one hand, (Liang
et al., 2007; Vasanthi & Annadurai, 2006) and (Bitar et al., 2009),
see also reference therein, have proposed various efficient sensor
scheduling algorithms to minimize the sensor network energy
consumption and consequentlymaximize the network lifetime. On
the other hand, researchers have proposedmany tree-search based
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sensor scheduling algorithms (mostly in conjunction with Kalman
filtering) to minimize the estimate error (Alriksson & Rantzer,
2005; Lin & Wang, 2013; Tiwari et al., 2005), e.g. sliding-window,
thresholding, relaxed dynamic programming, etc. By taking both
sensor network lifetime and estimate accuracy into account,
several sensor tree-search based scheduling algorithms have been
proposed in Shi et al. (2007), Shi, Capponi, Johansson, and Murray
(2008). In Joshi and Boyd (2009), the authors have formulated the
general sensor selection problem and solved it by relaxing it to
a convex optimization problem. The general formulation therein
can handle various performance criteria and topology constraints.
However, the framework in Joshi and Boyd (2009) is only suitable
for static systems instead of dynamic systems which are mostly
considered in the literature.

In general, deterministic optimal sensor selection problems
are notoriously difficult. In this paper, we propose a stochastic
scheduling strategy. At each time instant, a target is randomly
chosen to be measured according to a pre-assigned probability
distribution. We find the optimal pre-assigned distribution that
minimize an upper bound on the expected estimate error
covariance (in the limit) in order to keep the actual estimate
error covariance small. Comparedwith algorithms in the literature,
this strategy has low computational complexity, it is simple to
implement and provides performance guarantee on the general
deterministic scheduling problem. Of course, the reduction of
computational complexity comes at the expenses of degradation
of the ideal performance. However, in many situations the extra
computational complexity cost may not be justified. Further this
strategy can easily incorporate extra constraints on the scheduling
design, which might be difficult to handle in existing algorithms
(e.g. tree-search based algorithms).

Ourwork is related to Gupta et al. (2006), Mo, Garone, Casavola,
and Sinopoli (2011) and Ny et al. (2011). Gupta et al. (2006) in-
troduces stochastic scheduling to deal with sensor selection and
coverage problems, and Mo et al. (2011) extends the setting and
results in Gupta et al. (2006) to a tree topology. Although we also
adopt the stochastic scheduling approach, the problem formula-
tion andproposed algorithmsof this paper are different fromGupta
et al. (2006), Mo et al. (2011). In particular, we consider different
cost functions and design distributed algorithms that provide op-
timal probability distributions. Ny et al. (2011) has considered a
scheduling problem in continuous-time and proposed a tractable
relaxation, which provides a lower bound on the achievable per-
formance, and an open-loop periodic switching strategy to achieve
the bound in the limit of arbitrarily fast switching. However, be-
sides the difference in the formulations, their approach does not
appear to be directly extendable to the discrete-time setting. In
summary, our main contributions include:

(1) We obtain a stochastic scheduling strategy with performance
guarantee on the general deterministic scheduling problem by
solving distributed optimization problems.

(2) For scheduling implementation, we propose both centralized
and distributed deterministic scheduling strategies.

1.2. Notations and organization

Throughout the paper, A′ is the transpose ofmatrix A.Ones(n, n)
implies an n × n matrix with 1 as all its entries. Diag(V ) denotes
a diagonal matrix with vector V as its diagonal entries. M ≽ 0 (or
M ∈ S+) and M ≻ 0 (or M ∈ S++) respectively implies matrix M
is positive semi-definite and positive definite where S+ and S++
represent the positive semi-definite and positive definite cones.
For a matrix A, if the block entry Aij = A′ji, we use (·) in the matrix
to present block Aji. The trace of a squarematrix is denoted by Tr(·).

The paper is organized as follows. In Section 2, we mathemat-
ically formulate the stochastic scheduling problem. In Section 3,

we develop an approach and a distributed computing algorithm to
solve the optimization problem. In Section 4, we present some fur-
ther results and the extensions of our model. In Section 5, we con-
sider the scheduling implementation problem. At last, we present
simulations to support our results.

2. Sensor scheduling problem setup

Consider a set of N DTLTI systems (targets) evolving according
to the equations

xi[k+ 1] = Aixi[k] + wi[k] i = 1, 2, . . . ,N (1)

where xi[k] ∈ Rni is the process state vector and wi[k] ∈ Rni

is assumed to be an independent Gaussian noise with zero mean
and covariance matrix Qi ≻ 0. The initial state xi[0] is assumed to
be an independent Gaussian random variable with zero mean and
covariance matrix πi[0]. In practice, each DTLTI system modeled
above may represent the dynamic change of a local environment,
the trajectory of a mobile vehicle, the varying states of a manufac-
tory machine, etc. As a result of the sensor’s limited range of sens-
ing or the congestion of the sensing channel, at time instant k, only
one system can be observed as

ỹi[k] = ξi[k](Cixi[k] + vi[k]) (2)

where ξi[k] is the indicator function indicating whether or not the
system i is observed at time instant k, and accordinglywehave con-
straint2

N
i=1 ξi[k] = 1. vi[k] ∈ Rpi is the measurement noise,

which is assumed to be independent Gaussian with zeromean and
covariance matrix Ri ≻ 0.

Assumption 1. For all i ∈ {1, 2, . . . ,N}, the pair (Ai,Q
1/2
i ) is con-

trollable and the pair (Ai, Ci) is detectable.

Denote x̂i[k] as the estimate at time k, obtained by a causal estima-
tor for system i, which depends on the past and current observa-
tions {ỹi[j]}kj=1. We begin by considering problem ofminimizing (in
the limit) the maximal estimate error. The problem can be formu-
lated mathematically as

min
x̂i,{ξi[j]}∞j=1

max
i


lim sup
T→∞

1
T

T
k=1

E[(xi[k] − x̂i[k])′(xi[k] − x̂i[k])]


s.t. Equation : (1), (2), i = 1, . . . ,N,

N
i=1

ξi[k] = 1.

(3)

As the DTLTI systems are assumed to be evolving independently,
then for a fixed {ξi[j]}∞j=1 the optimal estimator for minimizing the
estimate error covariance of system i (i = 1, 2, . . . ,N) is given by
a Kalman filter3 whose process of prediction and update are pre-
sented as follows (Sinopoli et al., 2004). Firstly we define

x̂i[k|k] , E[xi[k]|{ỹi[j]}kj=1]

Pi[k|k] , E[(xi[k] − x̂i[k|k])(xi[k] − x̂i[k|k])′|{ỹi[j]}kj=1]

x̂i[k+ 1|k] , E[xi[k+ 1]|{ỹi[j]}kj=1]

Pi[k+ 1|k] , E[(xi[k+ 1] − x̂i[k+ 1|k])(xi[k+ 1]
− x̂i[k+ 1|k])′|{ỹi[j]}kj=1].

2 If we assume at most one target is chosen to be measured at each time instant,
then we have

N
i=1 ξi ≤ 1. Without loss of generality, in this paper we consider the

case that one out of N targets must be chosen at each time instant.
3 This indicates that N parallel estimators, i.e., Kalman filters, are used for

estimating N independent DTLTI systems.
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