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a b s t r a c t

Cross-correlated random field samples (RFSs) of engineering quantities (e.g., mechanical
properties of materials) are often needed for stochastic analysis of structures when
cross-correlation between engineering quantities and spatial/temporal auto-correlation
of each quantity are considered. Theoretically, cross-correlated RFSs may be simulated
using a cross-correlated random field generator with prescribed random field parameters
and cross-correlation. In engineering practice, random field parameters and cross-
correlation are often unknown, and they need to be estimated from extensive measure-
ments. When the number of measurements is sparse and limited, due to sensor failure,
budget limit etc., it is challenging to accurately estimate random field parameters or prop-
erly simulate cross-correlated RFSs. This paper aims to address this challenge by develop-
ing a cross-correlated random field generator based on Bayesian compressive sampling
(BCS) and Karhunen–Loève (KL) expansion. The generator proposed only requires sparse
measurements as input, and provides cross-correlated RFSs with a high resolution as out-
put. The cross-correlated RFSs are able to simultaneously characterize the cross-correlation
between different quantities and the spatial/temporal auto-correlation for each quantity.
The generator proposed is illustrated using numerical examples. The results show that pro-
posed generator performs reasonably well.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering quantities often exhibit both cross-correlation and auto-correlation over space or time, such as seismic
ground motions (e.g., [1]), mechanical properties of soils (e.g., [2,3]), multiscale material properties (e.g., [4,5]), wind fields
(e.g., [6]), among others. The cross-correlation between different engineering quantities means that, when one quantity
increases, its positively (or negatively) cross-correlated quantity tends to increase (or decreases) (e.g., [7]). On the other
hand, auto-correlation means that values of a quantity at neighboring locations are expected to be very similar among each
other, and expected to be significantly different if their locations are far away among each other (e.g., [7]). Both the cross-
correlation and auto-correlation of engineering quantities greatly affect stochastic analysis of engineering structures, as
reported in literature (e.g., [2,3,8–13]). To explicitly and simultaneously model the cross-correlation and auto-correlation,
cross-correlated random field samples (RFSs) are often used as input in stochastic analysis of engineering structures.

Cross-correlated RFSs may be simulated using a cross-correlated random field generator with prescribed random field
parameters and cross-correlation. Several generators are available in literature. For example, Yamazaki and Shinozuka
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[14] used a covariance decomposition method with statistical preconditioning technique to simulate multivariate processes.
Robin et al. [15] proposed to use direct Fourier transform for generating cross-correlated random field. Vořechovský [16] and
Cho et al. [17] simulated correlated random fields using Karhunen–Loève (KL) expansion. Zhu et al. [18] proposed to simulate
cross-correlated random fields through Cholesky decomposition and conditional sampling based on the joint distribution
constructed using copula theory. Note that, for the KL-based cross-correlated random field generator (e.g., [16]), it is often
assumed that the random field of each quantity shares the same auto-correlation structure, and that the cross-correlation
structure between different quantities is simplified as a cross-correlation coefficient. This assumption facilitates eigen-
decomposition of the correlation structures when using KL expansion and simplifies generation of cross-correlated RFSs.

To generate cross-correlated RFSs, all these generators above require prescribed cross-correlation and random field
parameters, e.g., the type of auto-correlation function and correlation length. In engineering practice, these parameters
are often unknown, and they need to be estimated from measurements. This often requires extensive measurements (e.g.,
[19,20]), which might not be available due to sensor failure, budget limit etc. (e.g., [21]). When the measurement data are
sparse and limited, the parameters estimated and subsequently used in the simulation of cross-correlated RFSs contain sig-
nificant uncertainty. The effect of such uncertainty on the simulation of cross-correlated RFSs has not been considered in
random field generation, except a recent preliminary work by Zhang et al. [22] on quantification of the uncertainty in the
estimated power spectrum for random field modelling of a single engineering quantity. In addition, the correlation structure
estimated from measurements on one quantity may be different from that of another quantity. This leads to violation of the
assumption adopted in the KL-based cross-correlated random field generator (e.g., [16]). Therefore, it is challenging to prop-
erly generate cross-correlated RFSs for stochastic analysis of structures when only sparse measurements are available.

This paper aims to address this challenge by developing a novel cross-correlated random field generator using Bayesian
compressive sensing or sampling (BCS) (e.g., [23–25]) to simulate cross-correlated RFSs directly from sparse measurements.
The proposed generator builds on the KL-based generators (e.g., [16]) and contains a method that is developed to satisfy the
assumption of identical correlation structure for all quantities in the KL-based generators. After this introduction, the KL-
based generation of cross-correlated random fields and BCS are briefly reviewed. Then a method is proposed to achieve iden-
tical correlation structure for all quantities when estimated from measurements. Finally, equations and step by step proce-
dures for the proposed generator are presented. A series of numerical examples are used to illustrate and validate the
proposed generator.

2. Simulation of cross-correlated random fields using KL expansion

The use of KL expansion to simulate cross-correlated random fields is briefly reviewed in this section. Consider, for exam-
ple, two engineering quantities, Q1 and Q2. Both Q1 and Q2 vary along the same coordinate x. In other words, Q1 and Q2 can be

modeled as two random vectors: Q 1 ¼ ½Q1ðx1Þ;Q1ðx2Þ; . . . ;Q1ðxNÞ�T and Q 2 ¼ ½Q2ðx1Þ;Q2ðx2Þ; . . . ;Q2ðxNÞ�T, respectively. The
superscript ‘‘T” represents transpose operation. xi (i = 1, 2, . . . , N) represents locations along one coordinate. When a station-
ary Gaussian random field is used to model Q1 or Q2, Q1(xi) or Q2(xi) is a Gaussian random variable with a mean of l1 or l2

and variance r2
1 or r2

2, respectively, at location xi (i = 1, 2, . . . , N). Note that Q1(xi) is spatially auto-correlated with Q1(xj)
(i, j = 1, 2, . . . , N), and the auto-correlation is specified by an auto-correlation function with a correlation length kc1 , or
equivalently an auto-correlation matrix CR1 . Similarly, the correlation matrix for Q2 is CR2 with a correlation length kc2 . In
this study, a bold italic symbol represents a column vector, and a bold upright symbol represents a matrix.

If Q1 is independent of Q2, RFSs of Q1 and Q2 can be simulated separately by a random field generator, such as a truncated
KL expansion (e.g., [26–30]):

Q 1 � l1lþ D1tP1
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where l is a column vector with all N elements being unity. kP
1 represents the P (P < N) largest eigenvalues of CR1 in a descend-

ing order. tP1 represents the P eigenvectors of CR1 , and it corresponds to kP
1. Note that although there are N eigenvalues for CR1 ,

some of them are near to zero, and CR1 can be effectively approximated as CR1 � tP1k
P
1ðtP1Þ

T
(e.g., [27–29,31–36]). nP1 represents

P uncorrelated random variables, each of which has a zero mean and a unit variance. tP1i , k
P
1i
and nP1i represent the i-th column

of tP1, the i-th diagonal element of kP
1, and the i-th element of nP1. D1 in Eq. (1) is a diagonal matrix, with all components being

the standard deviation (SD) of the Q1 field. Note that symbols in Eq. (1) with subscript ‘‘2” have meaning similar to those with
subscript ‘‘1”, but they are defined for the Q2 field. In this manner, generation of independent Q1 and Q2 RFSs reduces to real-
izations of P random variables nP1i and nP2i , such as standard Gaussian random variables. The transformation of a random field/
process simulation problem to a problem of simulating uncorrelated random variables by KL expansion also paves the way
for stochastic characterization of material properties (e.g., [37,38]), damage quantification and parameter updating in
stochastic dynamic systems (e.g., [39–41]), among others.
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