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a b s t r a c t

It is well known that appropriately biasing an estimator can potentially lead to a lowermean square error
(MSE) than the achievable MSE within the class of unbiased estimators. Nevertheless, the choice of an
appropriate bias is generally unclear and only recently there have been attempts to systematize such a
selection. These systematic approaches aim at introducing MSE bounds that are lower than the unbiased
Cramér–Rao bound (CRB) for all values of the unknown parameters and at choosing biased estimators
that beat the standardmaximum-likelihood (ML) and/or least squares (LS) estimators in the finite sample
case. In this paper, we take these approaches one step further and investigate the same problem from the
aspect of an end-performance metric different than the classical MSE. This study is motivated by recent
advances in the area of system identification indicating that the optimal experiment design should be
done by taking into account the end-performance metric of interest and not by quantifying a quadratic
distance of the unknown model from the true one.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of application-oriented experiment design,
experiments are designed to optimize a performance metric
associated with a particular application for which the estimated
model will be used; see, e.g., Barenthin, Bombois, Hjalmarsson,
and Scorletti (2008), Forssell and Ljung (2000), Gevers and Ljung
(1986), Katselis, Rojas, Hjalmarsson, and Bengtsson (2012) and
the references therein. A conceptual framework for application-
oriented experiment design was outlined in Hjalmarsson (2009).
Here, a function J quantifying the end-performance metric of the
system is used to select the unknown system model. The generic
description of such an experiment design is given by the following
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formulation:

min
Experiment

J

s.t. Ĝ ∈ Eadm,
(1)

where J is a performance metric of interest dependent on a model
G. The set of admissiblemodels is denoted as Eadm = {G : J ≤ 1/γ }.
The parameter γ is usually referred to in this context as accuracy.
For the experimental effort, differentmeasures commonly used are
input or output power, and experimental length. For Ĝ, standard
maximum likelihood (ML) and Bayesian estimation methods are
usually employed.

Assuming that the unknown model is parameterized by the
vector θ0 and that its corresponding estimate is θ̂, the achieved
end-performance metric is J(θ̂). Clearly, this quantity is a random
variable and a natural deterministic version of it, meaningful in
measuring the system’s performance, is its expected value E[J(θ̂)].
As the Cramér–Rao bound (CRB) is a bound of the mean square
error (MSE) within the class of unbiased estimators, an immediate
problem of interest is to examine the possibility of devising lower
bounds for E[J(θ̂)] and (possibly biased) estimators that achieve
these bounds. This paper is a first effort to investigate this problem
and to shed light into the gains in terms of end performance that
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can be achieved by such estimator designs. To this end, we follow a
similar line of reasoning developed in Eldar (2008) for the classical
MSE metric. For the linear Gaussian model of measurements,
biased estimators can be developed that outperform the classical
ML estimator in the sense of yielding a lower value for E[J(θ̂)].
For simplicity, we focus in this paper on linear and quadratic
performance metrics or performance metrics that can be well
approximated by first and second order Taylor series expansions.

As a remark, we note that there exist in the literature
approaches aiming to improve the estimation performance in
classical contexts by incorporating into the estimator information
available in the form of linear or nonlinear constraints. Significant
studies in this direction are provided in Gorman and Hero (1990)
and more recently in Mahata and Söderström (2004). In addition,
there is some recentwork on the use of biased estimators in system
identification (Chen, Ohlsson, & Ljung, 2012; Pillonetto & De
Nicolao, 2010), where themain focus is on the final MSE (or ‘model
fit’) of the estimates, instead of considering an application-specific
metric. The proposed framework in this paper is mostly inspired
by the results in Eldar (2008), and capitalizes on the application-
oriented designs developed in Barenthin et al. (2008), Forssell and
Ljung (2000), Gevers and Ljung (1986), and Katselis et al. (2012).

This paper is organized as follows: Classical end-performance
estimator designs within the class of unbiased estimators are dis-
cussed in Section 2 and subsections therein. Section 3 examines the
biased estimator selection problem within the end-performance
framework specializing in the class of linear-bias estimators. Some
results on the non-Gaussian data assumption are given in Section 4.
Simulations are provided in Section 5 and conclusions in Section 6.

2. Unbiased estimators

In the following, we investigate the problem of bounding the
achievable end-performance metric within the class of unbiased
estimators. The same study will be performed in a later section for
specific cases of biased estimators.

2.1. The classical approach

Here, we will consider the linear Gaussian model to provide
intuition on the developed theory. Consider the measurement
model:

yi = hT
i θ0 + wi, i = 1, 2, . . . ,N, (2)

where hi ∈ RL is a known deterministic regression vector, θ0 ∈ RL

is the unknown parameter vector and w = [w1, . . . , wN ]
T

∼

N (0, σ 2I) is the measurement noise. We also use the standard
assumption that L ≤ N . The aggregate data is expressed as the
usual linear Gaussian regression:

y = Hθ0 + w, (3)

where y = [y1, y2, . . . , yN ]
T

∈ RN and H = [h1h2 · · · hN ]
T

∈

RN×L. A more general case is

y = xθ0
+ w, (4)

where xθ0
denotes an N × 1 random vector, which depends on an

L × 1 unknown deterministic parameter vector.
If the estimator of θ0 is denoted by θ̂, then it is characterized

by the bias b(θ0) = E[θ̂] − θ0 and the covariance matrix C(θ0) =

E

(θ̂ − E[θ̂])(θ̂ − E[θ̂])T


. The CRB corresponds to a lower bound

on the covariance C(θ0) within the class of unbiased estimators.
Given our assumptions on the system in (3), i.e., linearity and

Gaussianity, it is known that the minimum variance unbiased

(MVU),ML and least squares (LS) estimators coincide, and that they
are given by the well-known expression

θ̂ML = (HTH)−1HTy. (5)

Furthermore, it is known that θ̂ML attains the CRB (Kay, 1993).

2.2. The end-performance metric approach

Within the end-performancemetric framework, similar bounds
have to be derivedwith respect to E[J(θ̂)]. To this end, we state the
following result:

Theorem 1. Let J : Bθ0
(r) → R+ be an end-performance metric

defined in the ball Bθ0
(r) = {θ ∈ RL

| ∥θ − θ0∥ < r}. J is assumed
to have at least twice continuously differentiable partial derivatives.
Then, within the class of unbiased estimators θ̂ ∈ Bθ0

(r) of θ0, one
has that

E[J(θ̂)]

= J(θ0) +
1
2

E

(θ̂ − θ0)

T
∇

2J(θ0 + ζ (θ̂ − θ0))(θ̂ − θ0)

, (6)

where ζ is a random variable in (0, 1). Here, the expectation is with
respect to θ̂ and ζ .

Proof. Given θ̂ ∈ Bθ0
(r), let λ = θ̂ − θ0, so ∥λ∥ < r , and define

φ(t) = J(θ0 + tλ). Then

φ(0) = J(θ0), φ(1) = J(θ0 + λ) = J(θ̂). (7)

From Taylor’s theorem,

φ(1) = φ(0) + φ′(0) +
1
2
φ′′(ζ ), for some ζ ∈ (0, 1). (8)

Furthermore, we have φ′(t) = ∇J(θ0 + tλ)Tλ and φ′′(t) = λT
∇

2J
(θ0 + tλ)λ. Then,

J(θ̂) = J(θ0) + ∇J(θ0)
T (θ̂ − θ0)

+
1
2
(θ̂ − θ0)

T
∇

2J(θ0 + ζ (θ̂ − θ0))(θ̂ − θ0). (9)

Notice that ζ ∈ (0, 1) is a randomvariable (as it depends implicitly
on θ̂). The measurability of ζ follows from a simple extension
of Gourieroux and Monfort (1995, Thm. 24.1). Now, taking the
expectation in (9) and using the assumption of unbiasedness of θ̂
(whichmakes the expectation of the linear term equal to zero), we
obtain (6). This completes the proof. �

Remark 2. If J is linear,1 then E[J(θ̂)] = J(θ0). This performance
can be achieved by any unbiased estimator. For J to be a legitimate
end-performance metric, we assume that J ≥ 0 on Bθ0

(r).

Remark 3. If J is a quadratic function2 of the form J(γ) = γTAγ +

bTγ + c,A ≻ 0 with A ∈ RL×L, b ∈ RL and c ∈ R such that
J(γ) ≥ 0, ∀γ , then E[J(θ̂)] = J(θ0) + E[(θ̂ − θ0)

TA(θ̂ − θ0)]. The
requirement that J(γ) ≥ 0 stems from the fact that J is assumed to
be a legitimate end-performance metric. The corresponding lower
bound is summarized in the next lemma:

1 E.g., the linearization of any given end-performance metric in control or signal
processing literature.
2 MSE’s and weighted MSE’s are such end-performance metrics.
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