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a b s t r a c t

This paper investigates the problem of state estimation incorporating infrequent, delayed and integral
measurements. In chemical process, there often exist two types of measurements. On one hand, the
measurements for process variables such as flow rates and pressures are sampled frequently and
are available nearly instantaneously. On the other hand, the measurements for quality variables such
as concentration are sampled infrequently and are available with a delay due to long analysis time
involved. Moreover, due to the interval time taken by chemical sample collection, the measurements
for some quality variables have another important characteristic: it is a function of the states of the
compositions over a period of time. This paper formulates the process with infrequent, delayed and
integral measurements as an equivalent variable dimension system, whosemeasurements are both delay
and integration free. Based on the new model, a variable dimension unscented Kalman filter (VD-UKF) is
proposed to estimate the states. Furthermore, the stability of the proposed VD-UKF is analyzed. Compared
with the existing results, the proposed stability condition is significantly relaxed and the invertibility
condition of Jacobian matrices is no longer needed. Finally, a simulation example demonstrates the
effectiveness of the proposed method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In chemical process systems, the measurements for process
variables such as flow rates and pressures are usually sampled
frequently and are available nearly instantaneously. However, the
measurements for certain quality variables such as concentration
are sampled infrequently and are only available with considerable
time delays. Moreover, instead of depending on a state at certain
past instant, the delayed measurements can also be a function
of the integral of the states over certain past period of time.
This type of measurements is called integral measurements in
this paper. For example, in distillation columns, laboratory (lab)
analysis is often required for measurement of the distillate
and bottoms compositions as the use of online analyzers is
often infeasible due to economic considerations or technological
difficulty, though online analyzers can be used to measure other
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process variables such as tray temperatures frequently without
time delay (Gopalakrishnan, Kaisare, & Narasimhan, 2011). In
order to analyze the composition, a sufficient amount of samples
needs to be collected. The time taken to collect the sample is not
small compared to the sampling period of the estimator, such
that it cannot be ignored. As will be seen in the next section, the
compositions of the sample do not represent the compositions at
a particular sampling instant but the integral of the compositions
within some period of time. In addition, due to offline analysis
of the collected samples in a lab the acquired measurement has
an unavoidable delay. If the quality variable is inferred directly
from the fast-sampled process variable through a model, it can
be inaccurate due to model errors, sensor bias or unmodeled
disturbances. In such cases the infrequent and delayed integral
measurements need to be incorporated into the estimator as the
lab analysis is usually more accurate.

By applying multi-rate state estimation techniques, Gudi, Shah,
and Gray (1995) designed adaptive strategies to fuse the infre-
quent and delayed measurements for a fermentation process in
a bioreactor. Zambare, Soroush, and Grady (2002) presented real-
time implementation of a robust multirate state estimator on a
continuous stirred-tank, free-radical, styrene polymerization reac-
tor, where the estimator uses both frequent online measurements
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Fig. 1. System with online analyzer and lab analysis.

and infrequent offline and delayed measurements. Gopalakrish-
nan et al. (2011) analyzed several existing methods to incorporate
delayed measurements and reinterpret their results under the ex-
tended Kalman filter framework. Bavdekar, Prakash, Patwardhan,
and Shah (2014) proposed a recursive moving window Bayesian
state estimator formulation to utilize delayed measurements to
compute the state estimates. All the mentioned papers considered
the fact that themeasurement for quality variable is infrequent and
delayed. However, another important characteristic about such a
measurement, the integration nature of sample collection, has not
been considered in the literature although the problem is com-
monly encountered in industries.

This paper investigates the problem of state estimation incor-
porating infrequent, delayed and integral measurements. First, the
mathematical model of the considered process with integral mea-
surements is formulated. Second, for the sake of filter design, true
process is reformulated as an equivalent variable dimension sys-
tem. Then a variable dimension unscented Kalman filter (VD-UKF)
is proposed to estimate the states. Furthermore, the stability of the
proposed VD-UKF is analyzed. Compared with the existing results
(Li & Xia, 2012; Xiong, Zhang, & Chan, 2006), the proposed stabil-
ity condition is significantly relaxed. The assumption that Jacobian
matrices are required to be invertible is no longer needed. This is
important since the Jacobianmatrices of VD-UKF cannot be always
a square matrix; let alone to be invertible. Finally, a simulation ex-
ample demonstrates the effectiveness of the proposed method.

Notation. The notation used in this paper is fairly standard. The
superscript ‘‘T ’’ stands for matrix transposition. diag{· · ·} stands
for a block-diagonal matrix. (·) denotes the same content as that
in the previous parenthesis. Given a real number x, ⌈x⌉ denotes the
smallest integer greater than or equal to x.

2. Problem formulation

Consider a continuous, nonlinear process described by the
following stochastic differential equation:

dx(t) = fc(x(t), u(t))dt + dwc(t), (1)

where x ∈ Rnx is the state of the process; u ∈ Rnu is the control
input; fc is the drift function;wc(t) ∈ Rnx is independent Brownian
motions with diagonal diffusion matrix Qc .

We consider two types of measurements: fast-rate measure-
ment such as online analyzer and slow-rate measurement such as
lab analysis. Similar to Gopalakrishnan et al. (2011), we use the
schematic diagram in Fig. 1 to show a process with online analyzer
and lab analysis. The online analyzer has frequent and delay-free
measurements. Its sampling period is assumed to be T . The mea-
surement equation is given by

yo(Tk) = Hox(Tk) + vo(Tk), (2)

where vo(Tk) ∈ Rnyo is the measurement noise. It is assumed to be
normally distributed white noise sequences with zero mean and
covariance Ro.

The lab analysis is often used as a more accurate measurement
of the system quality or critical variables, such as composition or
concentration. To get lab data, a technician may need to collect
certain amount of chemical samples from the field. Different from
the online analyzer, such sample collection process cannot be
completed instantaneously but in a time-interval. In addition, the
acquired measurement from the lab analysis has an unavoidable
delay due to the analysis time of the chemical samples. Thus, the
measurement equation is given by

yl(Tk) = H l(δ)

 ts+δ

ts
x(t)dt + vl(ts), if Tk = ts + δ + τs, (3)

where s = 1, 2, 3, . . . represents the sth lab measurement. ts is
the time instant to start collecting the sample in the field, and δ is
the time interval taken to complete the sample collection. H l(δ) is
the measurements matrix of the lab analysis. τs is time delay from
the time of finishing the sample collection to the completion of
lab analysis so that the data becomes available in the distributed
control systems (DCS). vl(ts) ∈ Rnyl is the lab analysis error. It is
assumed to be normally distributed white noise sequences with
zeromean and covariancematrix Rl. The lab analysis is infrequent:
the next time to start collecting the sample is ts+1 = ts +αs, i.e., αs
denotes the time interval between two successive starting instants
of the lab analysis. The lab analysis can be sampled at irregular
intervals and the measurement delay can also vary, that is, both
αs and τs can be time-varying.

Let us further explain such an integral measurement. For sim-
plicity and without loss of generality, we assume that a chemi-
cal component concentration is measured by the lab analysis and
the state element x1 represents the concentration. That is x1(t) =

Cx(t) with C = [1 0 · · · 0]. Let g(t) be the flow rate when
collecting the samples. In addition, it is assumed that the sample
collection starts at time instant ts and finishes at ts + δ. Hence, we
can calculate the concentration of the collected sample by ts+δ

ts
g(t)x1(t)dt ts+δ

ts
g(t)dt

=

 ts+δ

ts
g(t)Cx(t)dt ts+δ

ts
g(t)dt

. (4)

In practice, the sample collection rate g(t) can be considered as
constant g . Under this circumstances, (4) can be simplified as
C
δ

 ts+δ

ts
x(t)dt . Then the measurement of the lab analysis for this

sample is yl(Tk) =
C
δ

 ts+δ

ts
x(t)dt + vl(ts), where vl(ts) is the mea-

surement error of the lab analysis. After the lab analysis, the mea-
surement yl(Tk) becomes available at time Tk = ts + δ + τs. Let
H l(δ) =

C
δ
; then such class of measurements can be written in the

general form as shown by Eq. (3).

Remark 1. It is worth mentioning that the integral measurement
equation in (3) encompasses the traditionally non-integral one as a
special case. That is, by lettingH l(δ) =

C
δ
and δ → 0, themeasure-

ment equation (3) will become the traditionally non-integral one:

yl(Tk) = lim
δ→0

C
δ

 ts+δ

ts
x(t)dt + vl(ts) = Cx(ts) + vl(ts).

Our problem is how to combine the two types ofmeasurements
to estimate the true state of the systems.

3. Reformulation of the filtering model

It is difficult to directly use themodel (1)–(3) for filtering design,
since the measurement yl(Tk) in (3) not only is delayed but also
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