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a b s t r a c t

The computational efficiency of the Wiener path integral (WPI) technique for determining
the stochastic response of diverse dynamical systems is enhanced by exploiting recent
developments in the area of sparse representations. Specifically, an appropriate basis for
expanding the system joint response probability density function (PDF) is utilized. Next,
only very few PDF points are determined based on the localization capabilities of the
WPI technique. Further, compressive sampling procedures in conjunction with group spar-
sity concepts and appropriate optimization algorithms are employed for efficiently deter-
mining the coefficients of the system response PDF expansion. It is shown that the herein
developed enhancement renders the technique capable of treating readily relatively high-
dimensional stochastic systems. Two illustrative numerical examples are considered. The
first refers to a single-degree-of-freedom Duffing oscillator exhibiting a bimodal response
PDF. In the second example, the 20-variate joint response transition PDF of a 10-degree-of-
freedom nonlinear structural system under stochastic excitation is determined.
Comparisons with pertinent Monte Carlo simulation data demonstrate the accuracy of
the enhanced WPI technique.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Response determination methodologies based on Monte Carlo simulation (MCS) and its variants (e.g., [1,2]) are consid-
ered among the most versatile tools in the area of stochastic engineering dynamics. However, for large scale complex sys-
tems, these approaches can be computationally prohibitive. Extensive research in the field during the past few decades has
shown that alternative approximate analytical and/or numerical schemes offer efficient ways to address a broad class of
problems. State-of-the-art semi-analytical techniques for determining the response of stochastic dynamical systems include
moments equations and statistical linearization [3–5], stochastic averaging schemes [6], probability density evolution
methodologies [7], Fokker-Planck equation solution techniques [8], as well as numerical schemes based on discretized ver-
sions of the Chapman-Kolmogorov equation [9–11]. Additional well-established methodologies relate to stochastic reduced
order models, stochastic Galerkin and collocation schemes (e.g., [12,13]), as well as techniques based on dynamically orthog-
onal field equations [14]. Nevertheless, solving high-dimensional nonlinear stochastic differential equations (SDEs) remains
a persistent challenge in the field of engineering dynamics.
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One of the recently developed promising techniques in stochastic engineering dynamics relates to the concept of the
Wiener path integral (WPI) [15]. Path integral techniques have proven to be potent tools in theoretical physics, with appli-
cations ranging from superfluidity to quantum chromodynamics (e.g., [16]). The notion of path integral, which generalizes
integral calculus to functionals, was introduced by Wiener [17] and by Feynman [18], independently. Recently, an approx-
imateWPI based technique has been developed for determining the stochastic response of nonlinear and/or hysteretic multi-
degree-of-freedom (MDOF) structural systems [19]. The technique exhibits significant versatility and can account even for
systems endowed with fractional derivative terms [20]. Furthermore, it has been extended for addressing certain one-
dimensional mechanics problems with random material/media properties [21], while preliminary results towards an error
quantification analysis can be found in [22]. From a computational efficiency perspective, recent work by Kougioumtzoglou
et al. [23] reduced the computational complexity by, potentially, several orders of magnitude as compared to the original
formulation and numerical implementation of the technique.

The objective of this paper is to further enhance the computational efficiency of the WPI technique by exploiting recent
developments in the area of sparse representations. Indicatively, sparse expansions of multivariate polynomials have been
recently used for numerically solving stochastic (partial) differential equations [24–26]. In this paper, compressive sampling
procedures are employed in conjunction with group sparsity concepts and appropriate optimization algorithms for decreas-
ing drastically the computational cost associated with determining the system response probability density function (PDF). It
is shown that the herein developed enhancement renders the technique capable of treating readily relatively high-
dimensional stochastic systems. Two illustrative numerical examples are considered. The first refers to a single-degree-
of-freedom Duffing oscillator exhibiting a bimodal response PDF. In the second example, the 20-variate joint response tran-
sition PDF of a 10-DOF nonlinear structural system under stochastic excitation is determined. Comparisons with pertinent
MCS data demonstrate the accuracy of the enhanced WPI technique.

2. Wiener path integral technique

2.1. Wiener path integral formalism

A wide range of problems in engineering mechanics and dynamics can be described by stochastic equations of the form

F x½ � ¼ w ð1Þ
where F :½ � represents an arbitrary nonlinear differential operator; w denotes the external excitation; and x is the system
response to be determined. It is noted that Kougioumtzoglou [21] has shown recently that the WPI technique can address
not only problems subject to stochastic excitationwðtÞ, but also a certain class of one-dimensional mechanics problems with
stochastic media properties; that is, stochasticity is embedded in the operator F :½ �. Nevertheless, for the purpose of this
paper, and without loss of generality, an m-DOF nonlinear dynamical system with stochastic external excitation is consid-
ered herein in the form

M€xþ C _xþ Kxþ gðx; _xÞ ¼ wðtÞ ð2Þ
where x is the displacement vector process (xT ¼ ½x1; . . . ; xm�); M;C;K correspond to the m�m mass, damping and stiffness
matrices, respectively; gðx; _xÞ denotes an arbitrary nonlinear vector function; andwðtÞ is a white noise stochastic vector pro-
cess with the power spectrum matrix
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Next, relying on the mathematical framework of path integrals [16], the transition PDF pðxf ; _xf ; tf jxi; _xi; tiÞ can be written
as [19]

pðxf ; _xf ; tf jxi; _xi; tiÞ ¼
Z
Cfxi ; _xi ;ti ;xf ; _xf ;tf g

W½xðtÞ�½dxðtÞ� ð4Þ

with fxi; _xi; tig denoting the initial state and fxf ; _xf ; tf g the final state, and xi ¼ xðtiÞ; xf ¼ xðtf Þ; _xi ¼ _xðtiÞ and _xf ¼ _xðtf Þ. The
integral of Eq. (4) represents a functional integration over the space of all possible paths Cfxi; _xi; ti; xf ; _xf ; tf g;W½xðtÞ� denotes
the probability density functional of the stochastic process in the path space and ½dxðtÞ� is a functional measure. Further, the
probability density functional for the stochastic process xðtÞ pertaining to the MDOF system of Eq. (2) is defined as (e.g., [19])

W½xðtÞ� ¼ exp �
Z tf

ti

L x; _x; €xð Þdt
 !

ð5Þ

where L x; _x; €xð Þ denotes the Lagrangian functional given as
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