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In this paper we present novel extremum seeking controllers designed to achieve online constrained
optimization of uncertain input-to-output maps of a class of nonlinear dynamical systems. The algorithms,
inspired by a class of evolutionary dynamics that emerge in the context of population games, generate on-
line Shahshahani gradient-like systems able to achieve extremum seeking under simplex-like constraints
on the positive orthant. The method attains semi-global practical convergence to the optimal point, even
when the initial conditions are not in the feasible set, and it can be naturally adapted to address distributed
extremum seeking problems in multi-agent systems where an all-to-all communication structure is not
available. Potential applications include problems on distributed dynamic resource allocation, congestion
and flow control in networked systems, as well as portfolio optimization in financial markets. Via
simulations, we illustrate our results under different scenarios.
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1. Introduction

Extremum seeking control (ESC) (Ariyur & Krsti¢, 2003) is a type
of adaptive control designed to optimize the steady state input-to-
output map of a nonlinear dynamical system in which, in princi-
ple, this map is not exactly known. Different types of ESCs have
been proposed during the last years aiming to solve standard opti-
mization problems (Ne3i¢, Tan, Moase, & Manzie, 2010; Tan, NeSi¢,
& Mareels, 2006), as well as to achieve online learning in non-
cooperative and cooperative games (Frihauf, Krsti¢, & Basar, 2012;
Kvaternik & Pavel, 2012; Stankovi¢, Johansson, & Stipanovi¢, 2000).
In recent years, there has been interest to address the problem of
extremum seeking with constraints. For instance, in Tan, Li, and
Mareels (2013), the problem of extremum seeking with satura-
tion constraints is addressed based on penalty functions and anti-
windup techniques. Also, in Durr, Zeng, and Ebenbauer (2013),
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an extremum seeking algorithm based on a Lie-bracket approx-
imation is shown to achieve convex optimization of static maps.
Other works, such as DeHaan and Guay (2005), use penalty terms
in the cost functions to integrate the constraints in the optimiza-
tion problem and achieve extremum seeking. Nevertheless, most
of the existing approaches are not suitable for the case when mul-
tivariable global constraints are included in the extremum seeking
problem for dynamical systems, or when a lack of all-to-all com-
munication structures preclude the implementation of centralized
controllers. Since this type of optimization problems arises in sev-
eral engineering, economics, and finance applications, there exists
an increasing interest in designing adaptive and distributed algo-
rithms for dynamical systems, that guarantee convergence to the
optimal solution in a robust manner.

From this perspective, the main contribution of this paper is
the introduction of novel extremum seeking controllers based
on the framework of population games (Sandholm, 2010), which
combine the main features of some evolutionary dynamics that
emerge in the context of biological systems (Hofbauer & Sigmund,
1998), and the standard ESC. Since states with negative values are
unrealistic in many practical applications we consider extremum
seeking (ES) in the positive orthant, where the summation of the
variables under control must be less or equal than a given positive
value, allowing inequality constraints in the optimization problem.
The ES dynamics proposed in this paper retain the optimality and
adaptability properties of the classic evolutionary dynamics, as
well as the robustness and non-model based characteristics of
the standard ESC. Using the framework of population games we


http://dx.doi.org/10.1016/j.automatica.2015.05.002
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2015.05.002&domain=pdf
mailto:jipoveda@ece.ucsb.edu
mailto:nquijano@uniandes.edu.co
http://dx.doi.org/10.1016/j.automatica.2015.05.002

52 J.I. Poveda, N. Quijano / Automatica 58 (2015) 51-59

show that the ES dynamics guarantee convergence, in a semi-
global practical sense, to the optimal solution of a constrained
optimization problem with a global cost function, as well as in
systems describing strictly stable games where a potential function
does not exist. Additionally, we show that these dynamics can be
naturally modified to achieve ES in multi-agent systems without
an all-to-all communication structure.

The remainder of this paper is organized as follows. In
Section 2 some preliminary concepts are presented. In Section 3
we introduce the ESC for constrained optimization of dynamical
systems with a global potential function. Section 4 extends the
results for systems where the potential function does not exist.
Section 5 addresses the problem of distributed extremum seeking
in multi-agent systems. Section 6 discusses some further remarks
on the implementation of the algorithms, while Section 7 presents
some numerical simulations. Finally, Section 8 ends with some
conclusions.

2. Preliminaries

We denote by N, the set of positive integers, and by R" the
set of real numbers in the n-dimension, where n € N.q. Also, we
denote by R ; and R ; the set of non-negative real numbers and
strictly positive real numbers, respectively, in the n-dimension. We
use Vf; to represent the classical Euclidean gradient of a continu-
ously differentiable function f; : R" — R", and V;f; to represent
the ith entry of Vf, i.e,, Vifi := afr;—;z) Given a point z € R" the set
8(z) = {i € {1,...,n} : z > 0} denotes the support of z. Given
a set M we use M to denote its closure, and 8,«(M) = {z € M :
8(z*) C 4(z)} to denote the set of points in M whose support con-
tain the support of z* € M. The symbol B denotes a closed unit ball,
pB aclosed ball of radius p > 0,and M + p B the union of all sets
obtained by taking a closed ball of radius p around each pointin the
set M. We use 1 to represent the column vector of appropriate di-
mensions with entries equal to 1,and A} := {z € RY, : 1z=r)
to represent the simplex in the n-dimension, parameterized by the
constant r € R.o. We define int(A}) = {z € R.¢ : 17z =1},
A" = {z € R", : 17z < r}, and the corresponding set int(A").
We use the acronyms AS and SPAS to refer to asymptotical sta-
bility (Khalil, 2002), and semi-global practical asymptotical stabil-
ity (Tan et al., 2006; Teel, Moreau, & Nesi¢, 2003) respectively.

2.1. Population games and strictly stable games

Consider a population of entities playing a game, where each
entity selects a pure strategy i from the set #" = {1, ..., n}, where
n € N.y. Let y; be the normalized proportion of entities playing
strategy i, such that the population statey = [y1, ..., y»]' satisfies
y € A}, for some fixed r > 0. The payoff function associated
to the ith strategy is defined as a real-valued continuously
differentiable function f; : A} — R, and the vector of payoffs is
defined as f(y) = [i(¥),....fi, @) ..., f.(»]". The interactions
among the entities describe a population game, where two of
the main equilibrium concepts are the Nash equilibrium (NE)
and the globally evolutionarily stable state (GESS). The following
definitions are adapted from Sandholm (2010).

Definition 1. For a population game defined in A7, with vector of
payoffs given by f (), the point y* is a NE if (y — y*) Tf (y*) < 0, for
ally € A} If this inequality is satisfied uniquely by y* we say that
NE(f) = {y*}.

Definition 2. For a population game defined in A7, with vector of
payoffs given by f (y), the point y* is a GESS if (y — y*) "f(¥) < 0,
forally e AM\{y*}. If this strict inequality is satisfied we say that
GESS(f) = {y*}.

Note that according to Definitions 1 and 2, a GESS is a NE, but a
NE is not necessarily a GESS. Also, it is a standard fact that every
population game admits at least one Nash equilibrium. If this NE is
also a GESS, then it is also unique (Sandholm, 2010).

In this paper we will focus on optimization and learning
problems that can be analyzed using the framework of a special
type of population games, named strictly stable games.

Definition 3. A population game in A}, with vector of payoffs f (y),
is said to be strictly stable if it satisfies

-2 f@)—f@) <0, VyzeA. (1)
Stable games have been studied in the context of transportation
science (Dafermos, 1980; Smith, 1979), and more recently in the
context of feedback control and passive systems (Fox & Shamma,
2013). Examples of strictly stable games include some types
of symmetric normal form games, negative dominant diagonal
games, and strictly concave potential games. For a detailed
discussion about stable games the reader is referred to Sandholm
and Hofbauer (2009).

Since in general we will be dealing with dynamical systems
for which the function f is an unknown mapping defined in R",
and not only in A}, we will say that a continuous vector function
f : R" — R" satisfies the strictly stable game condition in A}, if
it satisfies Eq. (1). The following Lemma, adapted from Sandholm
(2010), relates the concepts of NE, GESS, and strictly stable
games.

Lemma 1. Consider a strictly stable game defined in A}, with vector
of payoffs f. Then, its unique NE is also a GESS.

2.2. Shahshahani gradients

The evolution in time of the population state y(t) towards
a NE or a GESS can be ruled by different dynamics known as
evolutionary dynamics (Hofbauer & Sigmund, 1998). In the present
work we consider the most recognized evolutionary dynamics,
i.e., the replicator dynamics (RDs), which are given by

Vi=ayi(fy) —fw), Vie ", (2)

where f := (1/Y)f "y, and « and Y are positive constants. The
replicator equation has been used in applications ranging from
biology (Akin, 1990) and engineering (Ramirez-Llanos & Quijano,
2010), to portfolio optimization in financial markets (Bomze,
2005), for example. A particular feature of the replicator equation
(2) is that, if the vector of payoffs f is selected as the classic
Euclidean gradient vector of a smooth potential function J, it will
describe a special type of gradient systems, named Shahshahani
gradients.

Definition 4. Consider the manifold M = R? ; associated with the

Riemannian metric G(z) = g;j(z), where g; = 8,]1% 8 = 1only
1

ifi = j, and 8; = 0, otherwise. Consider also a real-valued smooth

function] : M — R, whose derivative at the point z is given by the

linear map DJ : T,M +— R, where T,M is the tangent space of M at

point z. Hence, there exists a unique gradient vector V] such that
(n. Vg])zc(z> = DJ[n], for all n € T,M, where the operator (-, -)¢,

represents the inner product associated to the Riemannian metric
N

G(z) atpointz,and DJ[n] = >, :—im. Then, V] is a Shahshahani
gradient with potential function J, and G(z) is the Shahshahani
metric (Edalat, 2002).
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