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a b s t r a c t

The paper presents a novel method for assessing the local structural identifiability question for a general
non-linear state-space model. The method is a combination of (i) the application of a singular value
decomposition to a parametric output sensitivity matrix that is created by simply integrating the model
once and, (ii) a symbolic computation for a reduced model that is guided by the SVD results and allows a
confirmation of the conclusions regarding identifiability obtained in the first step. In case there is a lack
of identifiability, the symbolic computation quickly results in determination of the exact structure of the
nullspace and a suitable re-parametrisation. The method is discussed in detail and applied to three case
studies, of which the last two are considerably large, containing 22 and 43 parameters to be identified,
respectively.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The local structural identifiability problem for dynamic state-
spacemodels is awell-known andwell-studied topic in the system
identification literature. For a given model the problem amounts
to finding unique values (at least locally) for a set of model param-
eters obtained from calibrating the model against a (hypothetical)
data-set that is assumed to bemeasuredwithout anymeasurement
noise. The type of model we are interested in is the (general) con-
tinuous time, non-linear state-space model

dx(t)
dt

= f (x(t), u(t), θ) (1)

y(t) = h(x(t), θ) (2)

where f denotes the dynamic model structure, h the output or ob-
servation function, x(t) is the state vector (dim(x) = n), u(t) the
vector of input signals (dim(u) = r), y(t) the vector of output
signals or sensor readings (dim(y) = m), and θ a p-dimensional
vector of model parameters. We recall that if θ∗ denotes the true
parameter values, then a system is said to be locally structural
identifiable if, for any admissible inputu(t) and anyparameter vec-
tor θ ∈ Θ within an open neighbourhood of θ∗, equivalence of the
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output signals y(u, θ) and y(u, θ∗) implies θ = θ∗. For a detailed
discussion on local and global structural identifiability we refer to
Walter and Pronzato (1997).

Before a calibration of a givenmodel and associated experimen-
tal set-up can be performed, it is of course essential to know in ad-
vance whether values for the considered set of model parameters
can be uniquely determined. The least we need to establish is a
confirmation of local structural identifiability of the model for the
true values of the parameters θ = θ∗. In addition, in case the local
structural identifiability question is answered in the affirmative,
one ideally would like to quantify the uncertainty in the parameter
estimate and to analyse possible correlations between the param-
eters that hamper accurate parameter estimation if real measure-
ments are used that include measurement noise. A well-known
example of a strong correlation between two parameters is dis-
cussed by Holmberg, who shows that in the case of a batch-reactor
model describing the growth dynamics of a biomass, the growth
parameters µ and KM are heavily correlated. This correlation leads
to large uncertainty bounds on the parameter estimates (Holmberg
& Ranta, 1982). In summary, addressing the local structural identi-
fiability problem and analysing (parametric) uncertainty propaga-
tion for a given model is an important question in any modelling
exercise where real data are used for model calibration.

Of course, an answer to the local structural identifiability
problem very much depends on the available input/output signals.
Some model parameters may be better identifiable with a sensor
that measures the associated state variable, e.g., a temperature
sensor for determination of a heat-exchange constant in a heat-
diffusion model. Other parameters may not be identifiable, simply
because there is a lack of informative data from the available
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sensor. It is well known, for example, that oxygen uptake rate data
from a so-called rapid oxygen demand toxicity device (RODTOX)
are not sufficient for estimation of a few essential bio-kinetic
parameters that characterise the growth of a population of micro-
organisms feeding on a substrate in a batch reactor (Dochain,
Vanrolleghem, & Van Daele, 1995).

Because of its fundamental nature the local structural identifi-
ability problem has a long history. Many different approaches to
the problem exist including (i) Pohjanpalo’s power series expan-
sion (Pohjanpalo, 1978), (ii) application of Fliess’ series expansion
(Tunali & Tarn, 1987; Walter & Pronzato, 1996) (iii) application
of non-linear control theory and, more specifically, non-linear ob-
servability (Hermann & Krener, 1977; Isidori, 1989; Kwatny &
Blankenship, 2000), (iii) the similarity transformation approach
(Denis-Vidal & Joly-Blanchard, 2004; Denis-Vidal, Joly-Blanchard,
& Noiret, 2001; Tunali & Tarn, 1987), (iv) differential algebrameth-
ods (Anguelova, Karlsson, & Jirstrand, 2012; Denis-Vidal et al.,
2001; Ljung & Glad, 1994; Saccomani, 2004; Saccomani, Audoly,
& D’Angió, 2003; Sedoglavic, 2002), and (v) a sensitivity based
analysis (Brun & Reichert, 2001; Quaiser & Mönnigmann, 2009). A
summary of the various approaches can be found in a recent re-
view paper by Miao and co-workers (Miao, Xia, Perelson, & Wu,
2011). Of course, each of these approaches has its own advan-
tages/disadvantages.

The current literature also shows that a persistent bottle-neck
in the analysis of local structural identifiability lies in the fact that
for large models the analysis is highly complex and impractical be-
cause of the very large symbolic expressions that arise when using
computer algebra software to address the problem. For example,
already when using a Taylor series expansion for a model with
only 4 states, 5 unknown parameters, and only one output (sen-
sor), the symbolic expressions can become so long that the re-
sults are not tractable anymore (Chappell, Godfrey, & Vajda, 1990;
Walter & Pronzato, 1990). This computational complexity has al-
ready been noted in the early nineties by Chappell et al. and, re-
cently, was re-evaluated and re-confirmed by Chis and co-workers
in Chis, Banga, and Balsa-Canto (2011) for several non-linear state-
space models. The results show that the available methods for
addressing the local structural identifiability problem are very lim-
ited in their applicability when dealing with a large non-linear
state-spacemodelwithmany parameters and a very limited sensor
availability. In such cases, the number of derivatives of the output
signal y(t), i.e. ẏ(t), ÿ(t), . . . , that are needed in a structural iden-
tifiability analysis is practically infeasible.

Our primary goal is to present a hybrid approach to assess lo-
cal structural identifiability of the non-linear state-space model
(1)–(2). The approach attempts to bridge the gap between what is
often called theoretical and practical identifiability, i.e. the purely
theoretical yes/no question of local structural identifiability (Wal-
ter & Pronzato, 1997), and, on the other hand, the propagation
of parametric uncertainty in non-linear state space models that
is studied in more practically oriented identification studies (for
example Brun & Reichert, 2001). The method presented here
combines the strong points of both approaches. The numerical cal-
culations in our method are complemented with a tractable sym-
bolic computation that allows a firm conclusion on local structural
identifiability. In addition, since largemodels are central to the dis-
cussion, our approach seeks for an efficient analysis of identifiabil-
ity that can be calculated rapidly for relatively large models with
many states and parameters. The algorithm suggested in this paper
can be applied, for example, in the emerging field of systems biol-
ogy, where complicated molecular interactions are studied as part
of the dynamic behaviour of mRNA and protein concentrations. In
the example sectionwewill demonstrate this for two suchmodels,
i.e., a circadian clock model by Goldbeter, and the so-called NFκB
model by Lipniacki and co-workers that describes a two-feedback-
loop of the nuclear factor κB signalling pathway. First, however,

Fig. 1. Diagram of the augmented system, including state vector, parametric state-
and output-sensitivities.

we will make the discussion more precise by defining several con-
cepts, such as parametric state- and output sensitivity, Fisher in-
formation, etc.

2. Parametric state and output sensitivities—information flow
in the model

2.1. Introduction

Parametric output sensitivities can be easily derived for a given
(continuous-time) state space model (1)–(2). The associated para-
metric state/output sensitivity system follows straightforwardly
from a differentiation of Eqs. (1)–(2) w.r.t. θ and interchanging the
order of differentiation. Denotingwith xθ and yθ the partial deriva-
tives of the state and output vector with respect to θ , respectively,
we get

dxθ (t)
dt

=
∂ f
∂x

xθ (t) +
∂ f
∂θ

(3)

yθ (t) =
∂h
∂x

xθ (t) +
∂h
∂θ

. (4)

Note that the sensitivities xθ constitute a time dependent (n ×

p) matrix where each column represents the sensitivity of the
various states to one parameter θi taken from the vector θ .
Another important observation is that Eqs. (3)–(4) form a linear
time-varying system for xθ (t) with time-dependent coefficients
and input signals ∂ f

∂θ
and ∂h

∂θ
. Eqs. (1)–(4) are to be solved

simultaneously.
To better understand the information flow (the sensitivity

dynamics) in this set of equations, we refer to Fig. 1. Clearly,
there is no coupling between sensitivities of different parameters
{θi, i = 1, . . . , p}, whereas there is coupling between the original
system model and each individual parametric state and/or output
sensitivity. Put differently, we can think of the augmented system
(1)–(4) as p sub-systems that run in parallel and are driven by
the original system. For each of the p output sensitivities {yθi , i =

1, . . . , p} we observe that its dynamic behaviour is determined by
the original state vector x(t), input vector u(t), state sensitivity
vector xθi(t), and, possibly,

∂h
∂θ

.1

1 In Fig. 1 we have assumed for simplicity that the output function h does not
depend on θ . Hence, no arrows have been drawn from the output node y(t) to the
sensitivity nodes yθi (t). Of course, dependencies of hw.r.t. θ can easily be included
in the analysis.
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