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a b s t r a c t

Lyapunov equations that dependon communication graph topologies provide building blocks of Lyapunov
functions, which play an important role in controller design and stability analysis of multi-agent systems.
However, construction of such a Lyapunov equation in some published works has a flaw or requires
unnecessarily strong graph conditions. This paper presents several choices of Lyapunov equations over
various graph topologies.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperative control of multi-agent systems has attracted a lot
of attention in the control community for the past few years,
with some representative works being Jadbabaie, Lin, and Morse
(2003); Olfati-Saber andMurray (2004); Ren and Beard (2005), etc.
Stability analysis of multi-agent systems must take into account
the connectivity property of the graph, i.e., the way in which the
individual systems communicate. The importance in cooperative
control stability analysis of constructing a Lyapunov function that
depends on communication graph properties is emphasized in Das
and Lewis (2010); Lewis, Zhang, Hengster-Movric, and Das (2014);
Meng, Zhao, and Lin (2013); Qu (2009); Zhang and Lewis (2012);
Zhang, Lewis, and Qu (2012), and elsewhere in the literature.
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For cooperative tracking problem, a graph dependent Lyapunov
equation was proposed in Das and Lewis (2010, Lemma 2) when
the graph containing all follower nodes is strongly connected.
The condition was relaxed in Zhang et al. (2012) to allow the
graph to have a spanning tree, and further to allow the augmented
graph to have a spanning tree (Zhang & Lewis, 2012). It was
recently noticed that in the Lyapunov equation proposed in Das
and Lewis (2010, Lemma2), the construction of the diagonalmatrix
P cannot guarantee a positive definite matrix Q as claimed. A
counterexample was given in Su, Lin, and Garcia (2014), which
proposed a correct choice of positive definite diagonal matrix P
for strongly connected digraphs. However, the graph condition in
Su et al. (2014) is unnecessarily strong, and can be relaxed. Also,
a graph dependent Lyapunov equation proposed in Meng et al.
(2013) requires the graph to be strongly connected and detailed
balanced. This is rather restricted. Considering the importance of
graph dependent Lyapunov equations in stability analysis ofmulti-
agent systems, this paper aims to provide a thorough treatment of
this issue and lists several Lyapunov equations over different graph
topologies, which may be used as building blocks of Lyapunov
functions for multi-agent systems.

Notations. For notational convenience, 0 denotes either zero
scalar, zero vector or zeromatrix, according to the context. A vector
x = [x1, . . . , xn]T is positive, written as x > 0, if xi > 0 for all i; and
nonnegative, written as x ≥ 0,when all its entries are nonnegative.
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Matrix A > 0 (A ≥ 0) means that A is positive definite (positive
semi-definite); while a positive (nonnegative)matrix is denoted as
A ≻ 0 (A ≽ 0), where all its entries are positive (nonnegative). The
spectral radius of matrix A is ρ(A). The empty set is denoted as ∅.
The vector with all entries being ones is 1, and the identity matrix
with appropriate dimensions is denoted as I .

2. Preliminaries

Consider a multi-agent system consisting of N agents (nodes).
The communication network among these agents is modeled by a
directed graph G = {V, A}, where V = {v1, . . . , vN} is the node
set and A = [aij] ∈ RN×N is the weighted adjacency matrix of the
graph, with aij being the component in the ith row and jth column
of A. We consider nonnegative graphs, i.e., if there is an edge from
node j to node i, denoted as (vj, vi), then aij > 0; otherwise, aij = 0.
Node j is called a neighbor of node i, if aij > 0. Denote the neighbor
set of node i as Ni = {j | aij > 0, j = 1, 2, . . . ,N}. We assume
the graph is simple, i.e., aii = 0. A graph is undirected if aij = aji
for all i and j, and directed otherwise. The graph Laplacian matrix
L = [lij] ∈ RN×N is defined as

lij =


−aij, j ≠ i
N
j=1

aij, j = i.

A directed path from node i to node j is a sequence of adjacent
edges (vi, vl), (vl, vp), . . . , (vq, vj). A graph has a spanning tree if
there is a root node that has a path to every other node. A graph is
strongly connected if there is a directed path between every ordered
pair of nodes. A graph G(A) is strongly connected if and only if its
adjacency matrix A is irreducible (Berman & Plemmons, 1994).

Definition 1 (Reducibility/Irreducibility Qu, 2009). A nonnegative
matrix A = [aij] ∈ RN×N with N ≥ 2 is said to be reducible if the
set of its indices Ω = {1, . . . ,N} can be divided into two disjoint
nonempty sets Ωp = {i1, . . . , ip} and Ωq = {j1, . . . , jq}, satisfying
Ωp ∪ Ωq = Ω and Ωp ∩ Ωq = ∅, such that aiα jβ = 0 for all
α = 1, . . . , p and β = 1, . . . , q. Matrix A is irreducible if it is not
reducible.

It is widely recognized that Laplacian matrix L plays a funda-
mental role in stability analysis of multi-agent system. The Lapla-
cian matrix for a nonnegative graph is a singular M-matrix (Qu,
2009). For easy reference, some background of M-matrix and non-
negativematrix are presented here, whichwill be used in themain
results of this paper.

Let Z be a set of square matrices with nonpositive off-diagonal
entries, i.e.,
Z , {A = [aij] ∈ Rn×n

| aij ≤ 0, ∀i ≠ j}.
M-matrix is a subclass of Z, and is defined as below.

Definition 2 (M-matrix Berman & Plemmons, 1994). A square
matrix A is an M-matrix, if it can be expressed in the form

A = sI − C

for some nonnegative matrix C ≽ 0 and s ≥ ρ(C).

An M-matrix A = sI − C is irreducible (reducible), if the
nonnegative matrix C is irreducible (reducible).

Definition 3 (Singular/Nonsingular M-matrix Berman & Plemmons,
1994). A squarematrix A is a singular M-matrix, if it is anM-matrix
with s ≥ ρ(C); it is a nonsingular M-matrix, if s > ρ(C).

The next result is the well-known Perron–Frobenius theorem,
which is a fundamental result on nonnegative matrices.

Lemma 1 (Qu, 2009). Let A be a nonnegative square matrix.

(a) Then ρ(A) ≥ 0 is an eigenvalue and there exists a nonnegative
vectors x, such that Ax = ρ(A)x.

(b) If A ≻ 0, thenρ(A) > 0 is a simple eigenvalue, and its eigenvector
is positive.

(c) If A is irreducible, then there exists a positive vector x such that
Ax = ρ(A)x, and ρ(A) > 0 is a simple eigenvalue of A.

Lemma 2 (Berman& Plemmons, 1994). A square matrix A (A ∈ Z) is
a nonsingular M-matrix, if and only if one of the following equivalent
conditions holds:
(a) There is a positive vector x > 0 such that Ax > 0.
(b) There is a positive vector y > 0 such that ATy > 0.
(c) All the eigenvalues of A have positive real parts.
(d) A is nonsingular and A−1 is nonnegative.

3. Constructing Lyapunov functions on graphs

For cooperative control of multi-agent systems, two exten-
sively studied problems are the leaderless consensus problem (also
known as consensus problem, or cooperative regulation problem)
and the leader-following consensus problem (or cooperative track-
ing problem). For the former problem, all agents play an equal
role and tend to reach a consensus. For the latter one, there is a
leader node, labeled v0, whose behavior is not affected by the fol-
lower nodesv1, . . . , vN , and all followers are controlled to track the
leader node (Lewis et al., 2014). In this section, we present a vari-
ety of Lyapunov equations on graphs for these two fundamental
problems and show briefly how they relate to Lyapunov functions.

3.1. Lyapunov equation for leaderless consensus problems

Proposition 1 (Qu, 2009; Zhang et al., 2012). Suppose that the graph
G is strongly connected. Let p = [p1, . . . , pN ]

T > 0 be a left
eigenvector of the Laplacianmatrix L associatedwith the eigenvalue 0,
i.e., LTp = 0. Define

P = diag(pi),

Q = PL + LTP. (1)

Then P > 0 and Q ≥ 0.
The existence of such a positive left eigenvector p is guaranteed

by Lemma 1. A normalized p is usually chosen such that LTp = 0
and pT1 = 1. Proposition 1 is proved in Zhang et al. (2012) by
introducing the concept of generalized Laplacian potential.

The Lyapunov equation (1) can be used to build a Lyapunov
function. Take for example the consensus problem of multi-agent
system with single-integrator dynamics
ẋi = ui, i = 1, 2, . . . ,N.

Adopting the well known consensus protocol (Olfati-Saber &
Murray, 2004)

ui =


j∈Ni

aij(xj − xi)

leads to the closed-loop system
ẋ = −Lx, (2)
where x = [x1, . . . , xN ]

T . It is clear that V = xTPx can serve as
a Lyapunov function for system (2), where P solves the Lyapunov
equation (1).

Remark 1. When L is an irreducible singular M-matrix in the gen-
eral sense, not necessarily the Laplacianmatrix of a graph, a general
Lyapunov equation is provided in Qu (2009, Theorem 4.31) as

P = diag(yi/xi),
Q = PL + LTP,

where x = [x1, . . . , xN ]
T and y = [y1, . . . , yN ]

T are the positive
right and left eigenvectors of L associated with the eigenvalue 0.
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