
Stabilization in finite time for fractional-order hyperchaotic
electromechanical gyrostat systemsq

Zhibo Wang, Huaiqin Wu ⇑
School of Science, Yanshan University, Qinhuangdao 066001, China

a r t i c l e i n f o

Article history:
Received 18 October 2017
Received in revised form 1 March 2018
Accepted 6 April 2018

Keywords:
Fractional-order gyrostat system
Hyperchaos
Stabilization in finite time
Adaptive control law
Unknown parameter
Robustness

a b s t r a c t

This paper is concerned with adaptive robust stabilization in finite time for fractional-order
chaotic and hyperchaotic Electromechanical Gyrostat Systems (EGSs) with unknown
parameters and uncertainties. Firstly, a fractional-order EGS mathematical model is pro-
posed, and the existence of chaotic and hyperchaotic attractors is verified with the related
Lyapunov exponents, phase portraits and Poincaré sections. Then, fractional-order adaptive
laws are proposed to estimate the unknown parameters. Based on the fractional-order con-
vergence theory in finite time, a novel discontinuous state feedback controller with the
proposed fractional-order adaptive laws is designed to stabilize the fractional-order EGSs
in finite time globally, and the stabilization conditions are analytically addressed. Finally,
numerical simulations are employed to demonstrate the validity of the theoretical results.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional-order calculus disposes of the generalization of differentiation and integration up to an arbitrary order [1–5],
and has attracted increasing attention in physics and engineering over the past several decades [6,7]. On one hand, it was
found that fractional-order calculus is a useful instrument for modeling many systems better and describing complex phys-
ical phenomena more elegantly, especially for systems of memory and hereditary properties, such as mechanical system [8],
dynamic backlash [5], various materials and processes [9], fluid mechanics [10], bioengineering [11], wind turbine genera-
tors [12], chemical system [13], and oscillation of earthquakes [14]. On the other hand, it is convenient to design robust con-
trollers with the utilization of fractional-order calculus [15]. Hence, there were many contributions introducing fractional-
order theory to pre-existing integer-order mathematical models, see [16–19] and references therein.

The existence of chaotic and hyperchaotic attractors can be verified with some methods. Positive Lyapunov exponents
indicate chaos for dynamical systems [20]. In 1979, Rössler has been reported firstly hyperchaos, which is defined as a
high-dimensional chaotic attractor with more than one positive Lyapunov exponents [21]. Moreover, there are many means
that confirm the existence of chaotic and hyperchaotic attractors for a dynamical systems, such as the related phase portraits
and Poincaré sections. It is worth mentioning that the complex dynamical behaviors of dynamical systems can be effectively
investigated by means of numerical simulations [22–25].
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Chaos control has attracted increasing interest of many investigators, since the ground breaking work of Ott et al. [26].
After that, various control schemes have been developed to stabilize chaotic systems, such as backstepping control [27], slid-
ing mode control [28], passive control [29], impulsive control [30] and fuzzy control [31]. Analogous results for fractional-
order chaotic and hyperchaotic systems can be seen in [32–35].

The EGSs can be described by four-variables non-autonomous time-varying ordinary differential equations, and exhibit
very complex dynamical behaviors, for instance, chaos. There were many literatures on EGSs, since traditional mechanical
systems can be steered and used easier with the help of electromechanical systems [36]. In [36,37], the dynamic behaviors
of chaotic EGSs have been investigated extensively. Meanwhile, chaos control, chaos anticontrol and chaos synchronization
in the EGS have been discussed. The global synchronization of non-autonomous chaotic EGSs via variable substitution con-
trol has been explored in [38]. The sufficient criteria for global synchronization of a class of third-order non-autonomous
chaotic EGSs has been reported in [39], via linear state error feedback control.

It should be pointed out that, the above-mentioned work is to stabilize or synchronize EGSs asymptotically, namely, the
complete synchronization or synchronization cannot be accomplished in finite time. Whereas, the maximum value of stabi-
lization or synchronization time requires to be explicitly evaluated in practical engineering applications. In [40], based on
adaptive control technology, the finite-time stabilization and synchronization of non-autonomous EGSs have been studied.

It should be noted that, the all work mentioned above is based on the model described by integer-order ordinary differ-
ential equations for EGSs, and to the best of our knowledge, there is no effort being made in the literature to investigate the
fractional-order EGSs so far. However, fractional-order calculus can allow the model to take into account peculiarities that
the classical integer-order model is unable to capture [5,41–48], more importantly, a large volume of applications can benefit
from embedding novel fractional-order concepts into refined models. Therefore, the fractional-order mathematical model
with respect to EGSs is interesting in theory and application.

Motivated by the previous discussion, in this paper, our aim is to propose a fractional-order EGS mathematical model and
discuss the robust stabilization in finite time for the proposed fractional-order EGSs with unknown parameters and uncer-
tainties. Although chaos and hyperchaos, by now, are known to present in virtually any system of equations of the type con-
sidered in this paper, the verification for existence of the chaotic and hyperchaotic attractors in the proposed fractional-order
EGSs is provided to be sure, via the Lyapunov exponents, phase portraits and Poincaré sections. Based on fractional Lyapunov
function strategy, the robust stabilization conditions are presented.

The crucial novelty of our contribution lies in following aspects:

1. The fractional-order dynamic model with respect to EGSs is developed by fractional-order differential equation systems.
2. The existence of chaotic and hyperchaotic attractors in the proposed fractional-order EGSs are verified.
3. The novel robust controller, which includes discontinuous factors, is designed to realize the global stabilization goal in

finite time.
4. The unknown parameters are estimated via new fractional-order adaptive laws proposed.
5. The conditions and the upper bounds of the settling time for the global robust stabilization in finite time are addressed

and evaluated, respectively.

The rest of this paper is organized as follows. In Section 2, some definitions of fractional-order calculus and relevant prop-
erties are presented, respectively. And then the fractional-order EGSs model is developed by introducing Caputo fractional-
order differential operator. In Section 3, the existence of the chaotic and hyperchaotic attractors in the proposed fractional-
order EGSs are verified. Then the fractional-order adaptive law and controller are designed, and the global robust stabilization
in finite time is analytically discussed. In Section 4, numerical simulations are provided. Some conclusions are drawn in
Section 5.

Notation: R denotes the set of real numbers, Rn denotes the n-dimensional Euclidean space, Rm�n denotes the set of allm� n

realmatrices.Given thevectorw ¼ ½w1;w2; . . . ;wn�T 2 Rn;wT denotes the transposeofw, andkwk ¼ Pn
i¼1w

2
i

� �1
2 denotes theEucli-

dean norm of w in Rn. If function V : Rn ! R be: (i) regular in Rn; (ii) positive definite, i.e., VðxÞ > 0 for x – 0, and Vð0Þ ¼ 0; (iii)
radially unbounded, i.e., VðxÞ ! þ1 as kxk ! þ1, then Vð�Þ is said to be C-regular. sgnð�Þ denotes the signum function.

2. Preliminaries and model description

2.1. Fractional-order integral and derivative

In this subsection, some basic definitions about fractional-order calculus are recalled, and some useful lemmas are
presented.

Definition 2.1. ([3]) The Riemann-Liouville fractional integral of order a for a function f ðtÞ : ½0;þ1Þ ! R is defined as

R
0I

t
af ðtÞ ¼

1
CðaÞ

Z t

0

f ðsÞ
ðt � sÞ1�a

ds;

where a > 0.

Z. Wang, H. Wu /Mechanical Systems and Signal Processing 111 (2018) 628–642 629



Download English Version:

https://daneshyari.com/en/article/6953952

Download Persian Version:

https://daneshyari.com/article/6953952

Daneshyari.com

https://daneshyari.com/en/article/6953952
https://daneshyari.com/article/6953952
https://daneshyari.com

