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a b s t r a c t

This communique first presents a novel multi-policy improvement method which generates a feasible
policy at least as good as any policy in a given set of feasible policies in finite constrainedMarkov decision
processes (CMDPs). A random search algorithm for finding an optimal feasible policy for a given CMDP is
derived by properly adapting the improvement method. The algorithm alleviates the major drawback of
solving unconstrained MDPs at iterations in the existing value-iteration and policy-iteration type exact
algorithms. We establish that the sequence of feasible policies generated by the algorithm converges to
an optimal feasible policy with probability one and has a probabilistic exponential convergence rate.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We consider a finite constrained Markov decision process
(CMDP; see, e.g., Altman (1998) for example problems)with a finite
state setX , a finite action setA, a reward function R, and a transition
function P . We denote the admissible action set at state x as A(x)
so that A =


x∈X A(x). The reward function R is given such that

R(x, a) ∈ R, x ∈ X, a ∈ A(x) and P maps {(x, a)|x ∈ X, a ∈ A(x)}
to the set of probability distributions over X .

We define a (stationary non-randomized Markovian) policy π
as a mapping from X to A with π(x) ∈ A(x),∀x ∈ X , and let Π be
the set of all such policies. We define the objective value of π ∈ Π
with an initial state x ∈ X:

Vπ (x) := E
 ∞

t=0

γ tR(Xt , π(Xt))

X0 = x

,

where Xt is a random variable denoting state at time t by following
π and γ ∈ (0, 1) is a discounting factor.

The CMDP is also associated with a function κ defined over X
and a constraint-cost function D such that D(x, a) ∈ R, x ∈ X, a ∈
A(x). A policy π ∈ Π is called feasible if it satisfies the constraint
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inequality of


x∈X δ(x)J
π (x) ≤


x∈X δ(x)κ(x), where δ is an initial

state distribution over X and the constraint value of π with an
initial state x ∈ X is defined such that

Jπ (x) := E
 ∞

t=0

β tD(Xt , π(Xt))

X0 = x


for a discounting factor β ∈ (0, 1). Throughout the paper, we as-
sume that δ is fixed arbitrarily.

We let Jπδ =


x∈X δ(x)J
π (x), Vπδ =


x∈X δ(x)V

π (x), and κδ =
x∈X δ(x)κ(x). The problem is then to obtain an optimal feasible

policy π∗ in the feasible policy set,

Πf = {π : π ∈ Π, Jπδ ≤ κδ},

which achieves maxπ∈Πf V
π
δ , if the problem is solvable, that is,

Πf ≠ ∅. In the sequel, we assume that minπ∈Π Jπδ ≤ κδ so that
Πf ≠ ∅.

Feinberg (2000) showed that if the size of the above problem
is characterized by the maximum of |X | and maxx∈X |A(x)| and the
number of constraints, then it is NP-hard. In particular, he provided
amathematical program (MP) formulation for this problem (cf., P1
in Feinberg (2000, Theorem 3.1)) such that theMP is feasible if and
only ifΠf ≠ ∅. Due to its non-linearity and non-convexity proper-
ties, linear programming (LP), which can be used for finding a best
randomized policy, cannot be applied to the MP. A policy-iteration
(PI) type algorithm, called ‘‘exact policy search (EPS)’’, has been re-
cently presented by Chang (2014) based on a characterization of
the entire feasible policy space and it is shown that EPS converges
to an optimal feasible policy in a finite number of iterations, |Π | it-
erations in the worst case. But EPS requires solving unconstrained
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infinite-horizonMDPs at each iteration involved with feasible poli-
cies. The computational complexity of exactly solving an infinite-
horizon MDP is well-known to be high in general. In particular,
even if the time-complexity of the value iteration (VI) algorithm
for convergence in terms of the number of iterations is polynomial
in |X |, |A|, 1/(1− γ ), and the size of representing the inputs R and
P , the dependence on 1/(1 − γ ) is a major drawback (Blondel &
Tsitsiklis, 2000). On the other hand, PI’s time-complexity for con-
vergence is known to be exponential in general (Hollanders, Del-
venne, & Jungers, 2012) even if it is strongly polynomial when γ
is fixed (Ye, 2011). Note that the per-iteration computational com-
plexity of VI is O(|A||X |2) and that of PI is O(|X |3 + |A||X |2). Scher-
rer (2013) improves the result of the upper bound on the number
of iterations of PI by Ye (2011) by providing the upper bound of
O( |X |

2
|A|

1−γ log( 1
1−γ )) but again the dependence on 1/(1−γ ) is a ma-

jor drawback. He provided some upper bounds that are indepen-
dent of γ under some structural assumptions on MDPs but we do
not impose any such assumptions here. Even though in theoryMDP
can be solved in polynomial time by LP, it is known that the ex-
isting polynomial-time LP algorithms run very slowly in practice.
Simplex methods seem to perform well in practice but can take
an exponential number of iterations on some problems (Littman,
Dean, & Kaelbling, 1995).

Based on certain dynamic programming equations in Chen and
Blankenship (2004), Chen and Feinberg (2007) provided a VI-type
algorithm addressing CMDPs with non-randomized, but possi-
bly non-stationary policies, while the present communique deals
with only stationary policies. Therefore, it is not directly applica-
ble to the problem here. In fact, Chen and Feinberg’s approach is
only rather theoretically interesting because a sequence of finite-
horizon MDPs needs to be solved with increasing the horizon size
but the MDPs cannot be solved exactly in practice due to the arbi-
trarily increasing horizon size.

In this communique, we first provide a novel multi-policy
improvement method which generates a feasible policy at least as
good as any feasible policy in a given nonempty subset of Πf . We
stress that the improving policy is not necessarily in the subset.
We then properly adapt the improvement method to develop
a convergent random search algorithm for obtaining an optimal
feasible policy. In particular, we follow the spirit of ‘‘policy set
iteration (PSI)’’ in Chang (2013) for solving unconstrained MDPs.
However, becauseweneed to dealwith both feasible and infeasible
policies unlike the unconstrained case, we need (1) to test the
feasibility of policies in a set and (2) to generate a feasible policy
that improves only the feasible policies of the set while ignoring
the infeasible ones. At each iteration, we sample independently
N > 0 policies fromΠ by a given fixed distribution d and generate
a feasible policy that improves all feasible policies sampled at the
current iteration and all feasible policies sampled at the previous
iterations. This produces a sequence of monotonically improving
feasible policies {π∗k } where π∗k improves all feasible policies
sampled at iterations 0, 1, . . . , k, i.e., all feasible policies among
N(k + 1) sampled policies. The sequence {π∗k } approaches an
optimal feasible policy with probability one as k goes to infinity.

Furthermore, we establish that such monotonically improving
sequence has a probabilistic exponential convergence rate; for any
newly sampled feasible-policy π fromΠ by d, the probability that
Vπδ is bigger than V

π∗k
δ converges to zero with O(N−k) rate.

We note that PSI in Chang (2013) is not a random search al-
gorithm but a randomized variant of PI which generalizes PI with
a finite-time convergence–|Π | iterations in the worst case while
guaranteeing no slower convergence speed than PI in terms of
the number of iterations. The multi-policy improvement with ran-
domly sampled policies ismainly used to expedite the convergence
rate of PI. On the other hand, the algorithm proposed in this paper

is a random search. Multiple i.i.d. samples are drawn by a given
(sampling) distribution, instead of a single sample used in thewell-
known pure random search (see, e.g., Floudas and Pardalos (2009)
and Spall (2003)), and bookkeeping of the ‘‘maximum’’ among all
solutions generated so far is done. The multi-policy improvement
is basically used for the maximum bookkeeping. Unlike PSI, even if
the consecutive policies are the same in themonotonically improv-
ing sequence {π∗k }, it does not necessarily mean that an optimal
policy has been found. We cannot guarantee a finite-time conver-
gence but the probability one convergence.

The main motivation for studying such a random approach is
to alleviate the computational complexities of the two exact al-
gorithms in Chang (2014) and Chen and Feinberg (2007) having
a viable approach to solving CMDPs. The random search algorithm
does not solve any unconstrainedMDP (except possibly once for set-
ting an initial feasible policy) and only has the γ -independent per-
iteration complexity ofO(N(|X |3+|A||X |2)). That is, the complexity
amounts to the per-iteration complexity of PImultiplied by a factor
O(N).

Because the CMDP problem under consideration is just an NP-
hard combinatorial optimization problem, any meta-heuristic al-
gorithm (Floudas & Pardalos, 2009), e.g., genetic algorithm (Hi-
rayama & Kawai, 2000), simulated annealing (Wah, Chen, &Wang,
2007), etc., designed for constrained problems can be also adapted
into our setting with incorporating the multi-policy improvement
method. We here focus on a simplest form of meta-heuristic,
i.e., pure random search.

2. Multi-policy improvement

Let B(X) be the set of all real-valued functions on X . We denote
the probability of making a transition to state y ∈ X when taking
an action a ∈ A(x) at state x ∈ X by Pa

xy. Given a value function
w ∈ B(X), we let wδ =


x∈X δ(x)w(x) and define w-inducing fea-

sible action set

Aw(x) :=

a ∈ A(x) : D(x, a)+ β


y∈X

Pa
xyw(y)

≤ w(x)+ (1− β)(κδ − wδ)

, x ∈ X .

Roughly, in order for action a in A(x) to be feasible at state x when
the total constraint-cost at each state is measured byw, the excess
of the total constraint-cost made by taking a at x at the first time-
step needs to bewithin the ‘‘slackness’’ induced byw (cf., Lemma 1
in Chang (2014)).

Given a nonempty setΛ of feasible policies inΠf , defineψ such
that

ψ ∈ arg max
φ∈{φπ :π∈Λ}

V φδ , (1)

where for π ∈ Λ, φπ is given such that

φπ (x) ∈ arg max
a∈AJπ (x)


R(x, a)+ γ


y∈X

Pa
xyV

π (y)

, x ∈ X .

Note thatψ as defined above is not necessarily inΛ andφπ , π ∈
Λ, is the policy obtained by applying the original policy improve-
ment method inMDPs (by using a single policy as a base-policy for
improvement) to π with respect to the Jπ -inducing feasible action
set. In otherwords, the policy improvementmethod in PI is applied
to π with the actions that ensure the feasibility of the improving
policy. We now show that ψ improves all policies inΛ.

Theorem 1. Given a nonempty finite set Λ of feasible policies inΠf ,
consider ψ given in (1). Thenψ is feasible and Vψδ ≥ maxπ∈Λ Vπδ for
any δ.
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