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a b s t r a c t

In this paper, a novel instrumental variable (IV) based identification method is proposed for closed-
loop systems in the presence of coloured noise. The key technique lies in constructing an interleaved
information matrix with respect to a multiple model structure formulated for the bi-directional paths.
Then by utilizing UD factorization, all the parameter estimates for both forward and backward path
models with orders possibly from zero to n, as well as the corresponding minimum loss function values,
can be obtained simultaneously. Simulation results are provided to show the effectiveness of the proposed
method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Parameter estimation approaches based on least-squares prin-
ciple are widely used in many fields including linear prediction
problems and digital signal processing. They are often summed up
in the problem of optimizing a set of overdetermined equations
y = Xθ + e, (1)
with the objective J = minθ ∥y − Xθ∥2, where y ∈ Rm×1 repre-
sents the observation vector, X ∈ Rm×n is a data matrix, θ ∈ Rn×1

denotes a coefficient vector to be estimated, and e ∈ Rm×1 denotes
the error vector.

However, owing to its poor numerical performance, least-
squares problem may not be well solved byθ = argminθ ∥y −

Xθ∥2
=


XTX

−1 XTy in practice, especially when the matrix X
is ill conditioned (Golub & van Loan, 1989). Thus some alterna-
tive parameter estimation methods by adopting matrix factor-
ization techniques are often utilized (Golub & van Loan, 1989).
In Niu, Ljung and Björck (1996), matrix decomposition tech-
niques were investigated by incorporating a multiple model least-
squares (MMLS) structure, with which n sets of linear equations
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can be solved without any extra computational cost. In addi-
tion, the MMLS approach was found to attain improved numerical
performance by appropriately choosing the matrix factorization
technique. Inspired by this, Niu et al. presented a decomposition-
assisted least-squares method, which is known as augmented
upper diagonal identification (AUDI) algorithm, for open loop sys-
tems (Niu & Fisher, 1995; Niu, Fisher, Ljung, & Shah, 1994). In con-
trast to traditional least-squares algorithms, the AUDI algorithm
has the following advantages: (i) More information involved in the
data matrix, i.e. the augmented information matrix (AIM), can be
extracted; (ii) The extracted information has clear physical signif-
icance; (iii) By performing UD factorization on the AIM, parame-
ter estimates of the systems with orders from zero to n as well as
the corresponding minimum loss function values can be obtained
simultaneously from the resulting matrices U (the parameter ma-
trix) and D (the loss function matrix).

Note that in the AUDI algorithm, an open issue remains that is
the physical significance of the even columns of parameter matrix
and loss functionmatrix is left unclear for open-loop identification.
In Jiang, Yang, Wang, and Huang (2015), the authors investigated
the problem of simultaneous identification of bi-directional path
models in a closed-loop system in the presence of white noise.
An interleaved data pair upper diagonal (IDPUD) algorithm was
proposed in which both the odd and even columns of parameter
matrix and loss function matrix were utilized.

In this paper, we further extend the method in Jiang et al.
(2015) to solve the closed-loop identification problem for systems
with coloured noise,which commonly exist in industrial processes.
A new IDPUD identification method is proposed, in which the
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instrumental variable (IV) technique (Söderström & Stoica, 1983)
and the MMLS approach are incorporated.

2. Problem formulation

We consider a class of closed-loop processes with two data
collection ends. The forward and backward paths with x and y
being the corresponding outputs are modelled by the following
linear time-invariant discrete-time systems

x(k) =
B(z)
A(z)

y(k) + ex(k), (a)

y(k) =
Q (z)
P(z)

x(k) + r(k) + ey(k), (b)
(2)

where
A(z) = 1 + a1z−1

+ · · · + anxz
−nx ,

B(z) = bdz−d
+ · · · + bnxz

−nx ,

P(z) = 1 + p1z−1
+ · · · + pnyz

−ny ,

Q (z) = qcz−c
+ · · · + qnyz

−ny .

(3)

In the above expressions, z is the forward shift operator.
Eqs. (2)(a) and (2)(b) represent the models of the forward and
backward paths, respectively. Integers nx and ny denote the
corresponding orders, and aj, bj, pj and qj are themodel parameters.
Nonnegative integers c and d are the delays in the backward and
forward paths, respectively. Variables ex and ey denote coloured
noise sequences. Reference signal r describes a known external
signal assumed to be uncorrelated with ex and ey.

The problem of simultaneous identification of both forward and
backward paths of the closed-loop process with coloured noise ex
and ey in (2)(a)–(2)(b) is investigated in this paper.

The following assumptions are imposed.

Assumption 1. A delay exists in at least one path in the closed-
loop process, i.e., c + d > 0 or limz→∞

B(z)
A(z) · limz→∞

Q (z)
P(z) = 0.

Remark 1. Assumption 1 is required in this paper for two reasons.
(i) The systems with Assumption 1 satisfied can be frequently
encountered in practice (Anderson &Gevers, 1982; Sin & Goodwin,
1980). For example, in computer control systems, the sample and
hold characteristics of digital controllers will inevitability result
in delays. (ii) Assumption 1 is needed to maintain the upper
triangle form of parameter matrix in the multiple model structure
formulated for simultaneous identification of both forward and
backward paths. More details will be given in the subsequent
section.

Assumption 2 (Anderson & Gevers, 1982). Process noise sequences
ex and ey are uncorrelated, i.e., ex(i)⊥ey(j), for any i and j.

3. Interleaved data pair upper diagonal identification algo-
rithm based on instrumental variables technique

In this section, the IDPUD identification algorithm in Jiang
et al. (2015) will be extended by incorporating the instrumental
variables technique. An interleaved form of multiple model
structure corresponding to the forward and backward pathmodels
with orders from 0 to a sufficiently large n will be formulated.
Then, an interleaved information matrix (IIM) will be elaborately
constructed. It will be shown that all the parameter estimates
for both forward and backward path models as well as the
corresponding loss function values can be obtained by performing
UD factorization on the IIM.

3.1. An interleaved form of multiple model structure

Without loss of generality, suppose that d > 0, whereas c = 0.
From (2)(a) and (3), if the system order of the forward path model
is i (i = 0, 1, 2, . . . , n), then (2)(a) can be rewritten as

x(k) = ex(k) − θ
(i)
1 x(k − i) + θ

(i)
2 y(k − i)

− θ
(i)
3 x(k − i + 1) + θ

(i)
4 y(k − i + 1)

+ · · · − θ
(i)
2i−1x(k − 1) + θ

(i)
2i y(k − 1). (4)

Obviously, odd parameters θ
(i)
1 , θ

(i)
3 , . . . , θ

(i)
2i−1 correspond to

ai, ai−1, . . . , a1, respectively; even parameters θ
(i)
2 , θ

(i)
4 , . . . ,

θ
(i)
2(i+1−d) correspond to bi, bi−1, . . . , bd, respectively; and θ

(i)
2(i+2−d),

. . . , θ
(i)
2i are all zero.

We use θ (i)
l , l = 1, 2, . . . , 2i, to denote the estimates of θ

(i)
l ,

which will be defined explicitly in Section 3.2. Define

x(i)(k) = −θ (i)
1 x(k − i) +θ (i)

2 y(k − i) −θ (i)
3 x(k − i + 1)

+ θ (i)
4 y(k − i + 1) + · · · −θ (i)

2i−1x(k − 1) +θ (i)
2i y(k − 1), (5)

then the residuals with respect to the forward path are introduced
ase(i)
x (k) = x(k) −x(i)(k). (6)

Similarly, the residuals with respect to the backward path with
order i, for i = 0, 1, . . . , n, are introduced ase(i)
y (k) = y(k) −y(i)(k), (7)

wherey(i)(k) =α(i)
1 x(k − i) −α(i)

2 y(k − i)

+ α(i)
3 x(k − i + 1) −α(i)

4 y(k − i + 1)

+ · · · +α(i)
2i−1x(k − 1) −α(i)

2i y(k − 1) +α(i)
2i+1x(k), (8)

with α(i)
l , l = 1, 2, . . . , 2i + 1, representing the estimates of the

parameters in P(z) and Q (z) in (3).
Define an interleaved data vector as

ϕ(k) = [−x(k − n), y(k − n), . . . ,−x(k), y(k)]T, (9)

with n chosen sufficiently large, i.e.

n ≥ max

nx, ny


. (10)

By combining the above 2n + 2 models derived for both forward
and backward paths, amultiplemodel structure can be formulated
as

ϕT(k)U = ET(k), (11)

where

U =



1 α(0)
1

θ (1)
1 α(1)

1 · · · α(n−1)
1

θ (n)
1 α(n)

1

1 θ (1)
2 α(1)

2 · · · α(n−1)
2

θ (n)
2 α(n)

2

1 α(1)
3 · · · α(n−1)

3
θ (n)
3 α(n)

3

1 · · · α(n−1)
4

θ (n)
4 α(n)

4

1
...

...
...

1 θ (n)
2n α(n)

2n

1 α(n)
2n+1
1


, (12)

E(k) = [−e(0)
x (k − n),e(0)

y (k − n), . . . ,−e(n)
x (k),e(n)

y (k)]T. (13)
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