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a b s t r a c t

This paper deals with the stabilization of continuous-time linear time-invariant systems subject to
uniform input quantization. Specifically, the right-hand side of the closed-loop system is rewritten as
a linear system subject to a discontinuous perturbation due to the quantization error. Then, the controller
design is performed to achieve finite-time convergence of the closed-loop trajectories toward a compact
invariant set surrounding the origin. Furthermore, a computationally tractable design procedure for the
proposed controller based on linearmatrix inequalities, and some insights on the simulation of the closed-
loop system are presented. In addition, the effectiveness of the proposed control design procedure is
shown in a numerical example.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recent technology enhancement has enabled the control of dy-
namical systems via digital controllers. When a continuous-time
plant is controlled through a digital controller, side effects such
as time-delays, asynchronism, quantization, (see Elia and Mitter
(2001) and references therein), can turn into an excessive per-
formance degradation like the appearance of limit cycles, chaotic
phenomena or even instability of the closed-loop system, (Ceragi-
oli & De Persis, 2007; Delchamps, 1990). Concerning the effect of
quantization in control systems, such a topic has been extensively
addressed by researchers over the last years; see, e.g., Brockett
and Liberzon (2000), Ceragioli and De Persis (2007), Coutinho, Fu,
and de Souza (2010), Delchamps (1990), Fu and Xie (2005), Liber-
zon (2003), Sur and Paden (1997) and Tarbouriech and Gouaisbaut
(2012) just to cite a few.
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This paper pertains to the stabilization of continuous-time
linear time-invariant plants with uniformly-quantized input via
static state feedback control. Specifically, pursuing the general
approach introduced in Delchamps (1990), we model the uniform
quantizer as a discontinuous static isolated nonlinearity entering
into the dynamics of the closed-loop system. At this stage, since
the resulting closed-loop system is described by a discontinuous
right-hand side differential equation, the existence of solutions
to the closed-loop system is not guaranteed; see Filippov (1988).
Therefore, to tackle the problemunder consideration,we adopt, for
the closed-loop system, the notion of solution due to Krasovskii;
see Cortés (2008). Then, by the use of the sector conditions
for the uniform quantizer presented in Ferrante, Gouaisbaut,
and Tarbouriech (2014), coupled through S-procedure (see Boyd,
El Ghaoui, Feron, and Balakrishnan (1997)) to a quadratic
Lyapunov-like function, we propose a condition to guarantee the
finite-time convergence of the closed-loop trajectories toward
a compact invariant set surrounding the origin, (asymptotic
stability is usually impossible to prove due to the deadzone effect
induced by uniform quantization; see, e.g., Ceragioli, De Persis,
and Frasca (2011), Ferrante et al. (2014) and Tarbouriech and
Gouaisbaut (2012)). Afterwards, via the use of the projection
lemma (see Pipeleers, Demeulenaere, Swevers, and Vandenberghe
(2009)), such a condition is turned into a design procedure based
on the solutions of a convex optimization problem that in one shot
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provides: the controller gain, the invariant set wherein the closed-
loop trajectories ultimately converge, while minimizing the size
of such a set. Moreover, some insights on the simulation of the
considered closed-loop system are discussed.

It is worthwhile to notice that, although the approach intro-
duced in Delchamps (1990), (consisting in modeling quantizers
as isolated nonlinearities), has enabled to build constructive de-
sign tools for quantized control systems, as for the case of other
types of isolated nonlinearities such as, saturation, backlash etc.,
surprisingly no much work has been done in that direction, ex-
cept for Coutinho et al. (2010), Fu and Xie (2005) and Tarbouriech
and Gouaisbaut (2012), though the results in Coutinho et al. (2010)
and Fu and Xie (2005) relate to discrete-time systems subjected
to a logarithmic quantizer (deadzone-free). Specifically, themajor-
ity of the results available in the literature (see, e.g., Ceragioli and
De Persis (2007) and Liberzon (2003) and references therein), has
dealt with the stability analysis of quantized closed-loop systems
involving a controller designed while ignoring the presence of the
quantizer. In this sense, this paper wants to fill this gap by propos-
ing a design technique tailored to quantized systems. The contri-
bution of this paper with respect to Tarbouriech and Gouaisbaut
(2012) is twofold. On one hand, the novel sector conditions for the
uniform quantizer presented in Ferrante et al. (2014) are for the
first time exploited to design a static state feedback controller in
the presence of uniform input quantization. On the other hand, the
use of the projection lemma is considered to potentially improve
the proposed design technique. Notice also that even if the spirit of
the pursued approach is similar to Ceragioli and De Persis (2007)
and Jayawardhana, Logemann, and Ryan (2011), the results pre-
sented in this paper allows to deal with multi-inputs systems,
derive constructive conditions for the design of a state feedback
controller and explicitly characterize the set wherein the closed-
loop trajectories ultimately converge, directly from the knowledge
of a Lyapunov-like function. Therefore, our results can be con-
sidered as complementary with respect to those in Ceragioli and
De Persis (2007) and Jayawardhana et al. (2011).

The paper is organized as follows. Section 2 presents the
system under consideration and the problem we solve. Section 3
is dedicated to the main results. Section 4 is devoted to numerical
issues about the controller design. Moreover, some aspects on
the simulation of the closed-loop system are discussed. Finally,
Section 5 shows the effectiveness of the presented results in a
numerical multi-inputs example.

Notation. The set B(x, δ) denotes the δ radius closed Euclidean
ball centered at x. In denotes the identity matrix and 0 denotes
the null matrix (equivalently the null vector) of appropriate di-
mensions. For a matrix A ∈ Rn×m, A′, A(i) denotes its ith row, and
trace(A) denote its transpose and its trace, and He(A) = A + A′.
The matrix diag{A1, A2, . . . , An} is the block-diagonal matrix hav-
ing A1, A2, . . . , An as diagonal blocks and in symmetric matrices •

stands for symmetric blocks. For a vector x ∈ Rn, x(i) denotes its ith
component, x′ denotes its transpose, |x| stands for the componen-
twise absolute value operator, sign(x) is the componentwise sign
function, with sign(0) = 0, and ⌊x⌋ the componentwise floor oper-
ator. The set∆Zp is the set of the p-tuples of integersmultiple of∆.
The symbol ⟨·, ·⟩ denotes the standard Euclidean inner product and
× stands for the standard Cartesian product. For a setU , int(U) de-
notes the interior ofU . The double arrows notation F : Rn ⇒ Rm in-
dicates that F is a set-valuedmappingwith F(x) ⊂ Rm. Throughout
the paper, a.a. stands for almost all in a Lebesgue-measure sense.
For a function f : A → B, rge f := {y ∈ B : ∃x ∈ A such that y =

f (x)}.

Preliminary definitions: In this paperwe deal with differential
inclusions in the form

ẋ ∈ F(x) (1)

where F(x) : Rn ⇒ Rn. Consider the following definitions given
mainly in Goebel, Sanfelice, and Teel (2012) and Lin, Sontag, and
Wang (1996).

Definition 1. Let I ⊂ R≥0 be an interval. Given x0 ∈ Rn, an
absolutely continuous function φ : I → Rn is said to be a solution
to (1) from x0, if φ(0) = x0, and φ̇(t) ∈ F(φ(t)) for a.a. t ∈ I.

Definition 2. A solution φ : I → Rn to (1) from x0 is said to be
maximal, if there does not exist any other solution φ : I → Rn,
with I ⊂ I and such that φ(t) = φ(t) for every t ∈ I. Moreover, φ
is said to be complete, if I = R>0.

Definition 3. A set A ⊂ Rn is strongly forward invariant for (1), if
everymaximal solution φ to (1) is complete, and φ(0) ∈ A implies
rgeφ ⊂ A.

2. Problem statement

Consider the following continuous-time linear system with
quantized input:
ẋ = Ax + B q(u)
x(0) = x0

(2)

where x ∈ Rn, u ∈ Rp, x0 ∈ Rn are respectively the state, the input
of the system and the initial state. A, B are real matrices of suitable
dimensions, and q(·) is the uniform quantizer, which is described
by the static nonlinear functions defined as

q(u) := ∆ sign(u)


|u|
∆


(3)

where∆ is a positive given real scalar characterizing the quantiza-
tion error bound. Assuming that the state x is fully accessible, we
want to stabilize system (2) via the following control law u = Kx.
Therefore, by defining the function Ψ (u) := q(u) − u, the closed-
loop system reads as
ẋ = (A + BK)x + BΨ (Kx)
x(0) = x0.

(4)

Notice that, due to the presence of the uniformquantizer, the right-
hand side of (4) is a discontinuous function of the state, then there
is no guarantee about the existence of solutions when intended in
a classical sense; see Cortés (2008). To this end, as in Ceragioli and
De Persis (2007), in this paper we focus on Krasovskii solutions to
system (4), that is the solutions to the following differential inclu-
sion:

ẋ ∈ K ((A + BK)x + BΨ (Kx)) (5)

where the Krasovskii operator K is defined by K(f (x)) :=


δ>0
f (B(x, δ)). The existence of such solutions is guaranteed under
the very mild requirement of local boundedness of the right-hand
side of (4), obviously verified in our case. Moreover, as pointed out
in Goebel et al. (2012) and Hájek (1979), Krasovskii solutions are
arbitrarily close to the solutions to (4) obtained by perturbing the
state x with arbitrarily small perturbations; see Hájek (1979). This
fact provides a further reason to consider Krasovskii solutions, be-
yond the merely issue concerning the existence of solutions.

Remark 1. As pointed out in Liberzon (2003) and Tarbouriech and
Gouaisbaut (2012), the presence of the uniform quantizer defined
in (3), due to its deadzone effect, can represent a real obstacle to
the asymptotic stabilization of the closed-loop system. Namely,
one should be aware that if the matrix A is not Hurwitz, then the
asymptotic stability of the origin for the closed-loop system (4)
cannot be achieved via any choice of the gain K .
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