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a b s t r a c t

The problem of closed-loop enhanced sensitivity design is as follows: Given a linear time
invariant system, find a (realizable) feedback gain such that: (1) the closed-loop is stable
in the reference and the potentially damaged states, and (2) the eigenstructure includes
a subset of poles, with desirable derivatives, that lie in a part of the plane where identifi-
cation is feasible. This paper shows that pole derivatives with respect to system parameters
for a controller/observer system, contrary to the assumption often made, depend on both
the controller and the observer gains, i.e. the separation principle holds for placing the
poles but does not extend to the pole derivatives. Closed-form expressions for the deriva-
tives with due consideration to both gains are presented. Examination shows that the sum
of these derivatives is independent of both gains, is constant along the nonlinear paths
traced by the poles as damage increases and, provided the damage affects only the stiff-
ness, is nearly zero.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Eigenstructure assignment is a well-known scheme in which a static linear gain that satisfies design objectives is
obtained by directly specifying closed loop poles and eigenvectors. Eigenstructures that, in addition to satisfying some per-
formance objectives are least sensitive to uncertainties in some parameters are also of interest, and work related to this goal
can be found in [1–5], among others. The flip side of sensitivity minimization, sensitivity maximization, has been proposed in
Structural Health Monitoring to improve the resolution of damage characterization from identified eigenvalue shifts [6–10].
This paper examines how the presence of an observer in the loop, necessary when the operating mode is estimated state
feedback, affects the sensitivities. Eigenvalue sensitivities depend on the right and left side eigenvectors of the controller/
observer system and in this regard design for sensitivity enhancement is an eigenvector placement problem. Pole locations
remaining relevant, however, since apart from the constraints imposed on them by identifiability and stability, their posi-
tions determine the subspaces wherein the closed-loop eigenvectors must lay [11].

The design of closed-loop eigenstructures for monitoring requires decisions on the cost function to be maximized (min-
imized), decisions on the extent and distribution of damage for which closed-loop stability must be satisfied, and specifica-
tion of the limits the hardware imposes on the controller. While specific choices on these items are made in the numerical
example, the objective of this paper is not to propose design criteria but to present consistent expressions for the evaluation
of the derivatives of the poles of a controller/observer system. In as far as these derivatives go the common practice has been
to assume that the separation principle, which holds true for pole positions, extends to the derivatives and, therefore, that
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results for the controller poles do not depend on the observer gain. It is shown here that this is not so, and while the reason is
best appreciated in the context of the derivations, the essence can be stated from the outset, namely: pole derivatives depend
on both gains because parameter shifts resulting from damage are not known to the observer and, as a consequence, pole
positions in the perturbed state depend on both gains. It’s opportune to note that the problem of robust pole placement
in the presence of an observer [3,4] differs from the one considered here in that the issue in the former is how to select gains
such that the deviations between the target and the realized controller/observer poles from inevitable model error are min-
imized; the focus here being, instead, on how small changes in parameters, taking place after the controller/observer is for-
mulated, translate into movement of the poles.

In this paper we parameterize the controller/observer transition matrix to reflect the fact that the observer is
unaware of changes due to damage and derive the consistent closed form expressions for the pole derivatives.
Comparison between the expressions obtained and the ones that hold for full state measurements show that the effect
of the observer is captured by a matrix that is the stabilizing solution of a Sylvester equation [12]. Numerical results show
that the effect of the observer on the Jacobian of the controller poles, and on the extent of damage for which the
closed-loop is stable, can be large. A number of lemmas extracted from the derivation are presented and proved; the most
significant, given its implications in the design for stability, shows that the sum of the discrete time (DT) derivatives is
independent of the controller and of the observer gains. A numerical section exemplifying the analytical examinations is
included.

2. Sensitivity of controller/observer system

Let S be a non-defective but otherwise arbitrary square matrix that is a function of some parameter, h. We shall refer to
the derivatives of the eigenvalues of S with respect to h as sensitivities; not to be confused with the matrix in the Laplace
domain that carries the same name [13,14]. The sensitivity of the jth eigenvalue with respect to h writes

k0j ¼ uT
j S

0wj ð1Þ
where wj and uj are the right and left side eigenvectors and the prime indicates differentiation with respect to h.
We now particularize Eq. (1) to the case where S is the transition matrix of a finite dimensional linear time invariant
system under estimated state feedback. We begin with the expression that governs the evolution of the state in DT,
namely

xkþ1 ¼ Adxk þ Bduk þ Bxxk þ Bf f k ð2Þ

where Ad 2 RN�N is the transition matrix, Bd, 2 RN�r and Bx 2 RN�z are the control input and disturbance influence matrices,
uk 2 Rr�1 are the control inputs and xk 2 Rz�1 the disturbances, which are typically assumed to be zero mean, Gaussian, and

white, with covariance Q. Finally, if there are any deterministic exogenous excitations, f k 2 Rh�1, then Bf 2 RN�h is the asso-
ciated influence matrix. Given the stochastic disturbances (plus the measurement noise) the poles identified from finite
length signals are random variables and, consequently, so are the identified pole movements due to plant parameter changes
(damage in this application). The expressions derived next are deterministic and correspond to the expectation level from an
unbiased identification. With K 2 RN�m as the time invariant gain of the observer, the evolution of the estimated state is gov-
erned by

x̂kþ1 ¼ Adx̂k þ Bduk þ Bf f k þ Kðyk � ŷkÞ ð3Þ

where the true and the estimated outputs are denoted yk and ŷk 2 Rm�1. For full estimated state feedback we have

uk ¼ �G � x̂k ð4Þ
where G 2 Rr�N is the control gain, x̂ is the estimated state and the minus sign is, of course, conventional. We restrict the
output yk to be a linear combination of the state plus some measurement noise, mk, typically assumed zero mean, Gaussian,
and white, with covariance R. Excluding cases with direct transmission, or assuming the direct transmission contribution is
subtracted from the output, one has

yk ¼ Cdxk þ mk ð5Þ
From previous results it follows that the state and the estimated state form a 2N linear system having the state space

recurrence

xkþ1

x̂kþ1

� �
¼ Ad �BdG

KCd Ado � KCd � BdG

� �
xk
x̂k

� �
þ Bf

Bf

� �
ff kg þ

Bx 0
0 K

� � xk

vk

� �
ð6Þ

where the reader will note that we’ve introduced notation to distinguish between the transition matrix that reflects changes
due to damage, Ad, and the invariant transition matrix of the state estimator, Ado. Needless to say, in the reference state Ado =
Ad. Observations on the poles and eigenvectors of the system in Eq. (6) are most easily made after introducing the basis
transformation
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