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a b s t r a c t

This work compares viscous and structural damping in a lumped-parameter model of a
piezoelectric vibration energy harvester. The dynamic response and power harvested are
solved in closed-form for devices with combined viscous and structural damping. The
results are then reduced to get expressions for isolated cases of viscous and structural
damping. The conditions that maximize the power harvested are determined. These
devices generally have two maxima. One maximum is not sensitive to the damping model.
The other maximum, however, has meaningful differences between viscous and structural
damping models. The differences between the two models increase with increasing elec-
tromechanical coupling.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Analytical models for piezoelectric vibration energy harvesting devices commonly include viscous mechanical damping
to account for the dissipative losses in the system. Lumped-parameter models in Refs. [1–13] include viscous damping. Ref-
erences [1,14–26] include viscous damping when analyzing piezoelectric beam distributed-parameter models. Viscous and
strain rate damping are included in distributed-parameter models for piezoelectric beam devices in Refs. [27–30]. None of
the references in our bibliography use a structural damping model, despite its general popularity for vibration analyses.

Many vibration energy harvester models use viscous damping for convenience and no obvious viscous elements are pre-
sent in the physical device. The damping in these devices could come for the elastic structure itself, and elastic structures in
sinusoidal vibration may not exhibit viscous damping behavior [31,32]. A structural damping model could be appropriate for
some devices.

The choice of damping model is specific to a particular device and its operating environment. It is unlikely that the damp-
ing in all piezoelectric devices can be accurately modeled using a single, unique model. Careful experiments are necessary to
determine whether a viscous, structural, combination of viscous and structural, or another damping model is appropriate for
a particular device.

This technical note determines closed-form expressions for the dynamic response and average power harvested by piezo-
electric vibration energy harvesters with viscous and structural damping models. Predictions of the power harvested by
devices with viscous damping are compared to those with structural damping. Numerical results are presented for a wide
range of damping and electromechanical coupling coefficients. Surprisingly-large differences are shown between the two
damping models, even though these devices have purposely-low damping.
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2. Analytical model

A schematic of a lumped-parameter piezoelectric vibration energy harvester is shown in Fig. 1. The device consists of a
proof mass m that is supported by a piezoelectric structure with stiffness kp, electromechanical coupling ep, capacitance Cp,
and structural loss factor ds. For most devices, these parameters depend on the properties of the piezoelectric material and
the device’s configuration and geometry. Deformations of the piezoelectric structure result in generated voltages VðTÞ that
power an electrical load with equivalent resistance R. The device is dynamically excited by vibration of its base with the form
YðTÞ ¼ Y0 cosXT, where Y0 and X are its amplitude and frequency, respectively. The displacement UðTÞ of the proof mass is
relative to this vibration.

The nondimensional equations of motion for the device are

€uþ 2f _uþ ð1þ j2gÞuþ cv ¼ x2 cosxt; a _v � a _uþ v ¼ 0; ð1Þ
where the overdot is nondimensional time differentiation. Viscous mechanical damping, with viscous damping coefficient
dv , is added to Eq. (1) even though there are no viscous damping elements in the model. The nondimensional parameters
in Eq. (1) are related to the dimensional ones by

u ¼ U=Y0; v ¼ CpV=epY0; t ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kp=m

q
T; x ¼ X

ffiffiffiffiffiffiffiffiffiffiffiffi
m=kp

q
; g ¼ ds=2kp; f ¼ dv=2

ffiffiffiffiffiffiffiffiffi
kpm

q
; c ¼ e2p=kpCp

a ¼ RCp

ffiffiffiffiffiffiffiffiffiffiffiffi
kp=m

q
: ð2Þ

The model described by Eq. (1) applies to both piezoelectric stack devices and single-mode representations of piezoelec-
tric beam devices. Lumped-parameter modeling of piezoelectric beam devices is discussed in Refs. [33,34]. Expressions for
the stiffness, electromechanical coupling, and capacitance of bi-morph piezoelectric beams are given in Ref. [35]. The nondi-
mensional damping coefficient f is the device’s percent damping. The parameter g for the structural damping model has an
analogous interpretation.

The closed-form, steady state solution to Eq. (1) is

uðtÞ ¼ A cosðxt � /Þ; vðtÞ ¼ B cosðxt � wÞ; ð3aÞ

A ¼ x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2x2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2 � axð2gþ 2fxÞ½ �2 þ 2gþ 2fxþ axð1þ c�x2Þ½ �2

q ; ð3bÞ

tan/ ¼ ð2gþ 2fxÞð1þ a2x2Þ þ acx
1�x2 þ a2x2ð1þ c�x2Þ ; ð3cÞ

B ¼ ax3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2 � axð2gþ 2fxÞ½ �2 þ 2gþ 2fxþ axð1þ c�x2Þ½ �2

q ; ð3dÞ

tanw ¼ x2 � 1þ axð2gþ 2fxÞ
2gþ 2fxþ axð1þ c�x2Þ : ð3eÞ

The power harvested by the device is p ¼ v2=a ¼ B2½1þ cosð2xt � 2wÞ�=2a. Consistent with the literature, the perfor-
mance of the device is quantified by the average power harvested over one oscillation cycle s ¼ 2p=x. Averaging p in this
way gives

Fig. 1. Schematic of a piezoelectric vibration energy harvesting device.
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