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a b s t r a c t

This paper first presents results on the equivalence of several notions of L2-stability for linear mean-field
stochastic difference equations with random initial value. Then, it is shown that the optimal control of a
mean-field linear–quadratic optimal control with an infinite time horizon uniquely exists, and the opti-
mal control can be expressed as a linear state feedback involving the state and its mean, via the minimal
nonnegative definite solution of two coupled algebraic Riccati equations. As a byproduct, the open-loop
L2-stabilizability is proved to be equivalent to the closed-loop L2-stabilizability. Moreover, the minimal
nonnegative definite solution, themaximal solution, the stabilizing solution of the algebraic Riccati equa-
tions and their relations are carefully investigated. Specifically, it is shown that the maximal solution is
employed to construct the optimal control and value function to another infinite time horizonmean-field
linear–quadratic optimal control. In addition, the maximal solution being the stabilizing solution, is com-
pletely characterized by properties of the coefficients of the controlled system. This enriches the existing
theory about stochastic algebraic Riccati equations. Finally, the notion of exact detectability is introduced
with its equivalent characterization of stochastic versions of the Popov–Belevitch–Hautus criteria. It is
then shown that the minimal nonnegative definite solution is the stabilizing solution if and only if the
uncontrolled system is exactly detectable.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This paper discusses themean-field stochastic linear–quadratic
(LQ) optimal control problemwith an infinite horizon. Specifically,
we wish to minimize the cost functional

J(ξ ; u) =

∞
k=0

E

xTkQxk + (Exk)T Q̄Exk + uT

kRuk + (Euk)
T R̄Euk


(1.1)
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subject to the dynamicsxk+1 = (Axk + ĀExk + Buk + B̄Euk)

+ (Cxk + C̄Exk + Duk + D̄Euk)wk,
x0 = ξ, k ∈ {0, 1, 2, . . .} , N.

(1.2)

System (1.2) is a discrete-time stochastic difference equation (SDE)
of McKean–Vlasov type, which is also referred to as a mean-field
SDE (MF-SDE). Here, the term ‘‘mean-field’’ comes from the mean-
field theory, which is developed to study the collective behavior
resulting from individuals’ mutual interactions in various physical
and sociological dynamical systems. According to the mean-field
theory, the interactions among agents can be modeled by a mean-
field term. Letting the number of individuals approach infinity, the
mean-field term can approximate the expected value. As a feature
of MF-SDEs, the dynamics depend on the statistical distribution of
the solution. This provides effective techniques for studying large
systems by reducing the dimension and the complexity. In addition
to the mean-field theory above, the study of mean-field stochastic
LQ optimal control is motivated by optimal control theory: People
might like to have the optimal control, as well as the optimal
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state, to be not too ‘‘random’’, as pointed out in Yong (2013).
To achieve that, one could include variation of the state process
and/or variation of the control process in the cost functional. In
fact, a particular example of this is the Markowitz mean–variance
portfolio selection problem in financial investment, where the risk
to be minimized is quantified by using the variance of the wealth.
This Noble-Prize-winning approach became the foundation of
modern finance theory and inspired hundreds of extensions and
applications.

The investigation of continuous-time mean-field stochastic
differential equations may be traced back to 1960s (McKean,
1966); see also Sznitman (1989) for early developments. Recently,
there is an increasing interest in the mean-field control theory
in mathematics and the control communities. In Ahmed and
Ding (2001), to cope with the possible time-inconsistency of
optimal control, an extended version of the dynamic programming
principle was derived by using the Nisio nonlinear operator
semigroup. Subsequently, stochastic maximum principles were
studied in several works (Ahdersson & Djehiche, 2011; Buckdahn,
Djehiche, & Li, 2011; Li, 2012), which specify necessary conditions
for optimality. The results range from the case of a convex action
space to a general action space. It is valuable to mention that the
adjoint equations are mean-field backward stochastic differential
equations (Buckdahn, Djehiche, Li, & Peng, 2009). As applications,
the Markowitz mean–variance portfolio selection and a class of
mean-field LQ problems are studied in Ahdersson and Djehiche
(2011) and Li (2012) using the stochastic maximum principle.
In Yong (2013), mean-field LQ control with a finite time horizon
is studied using a variational method and a decoupling technique.
It is shown that the optimal control is of linear feedback form and
that the gains are represented using solutions of the two coupled
differential Riccati equations. Later, Huang, Li, and Yong (2015)
generalizes results in Yong (2013) to the case with an infinite
time horizon. For other interesting aspects of mean-field optimal
control problems, readersmay refer to, for example, Ahmed (2007),
Bjork and Murgoci (2010), Meyer-Brandis, Oksendal, and Zhou
(2012) and Yong (2013) and related works. It is worth mentioning
that the study of controlled mean-field stochastic differential
equations is also partiallymotivated by a recent surge of interest in
mean-field games (Huang, Caines, & Malhame, 2003, 2007; Lasry
& Lions, 2007; Li & Zhang, 2008a,b). Compared with the topic of
this paper, mean-field games use decentralized controls, that is,
the controls are selected to achieve each individual’s own goal by
using local information.

This paper is a continuation of Elliott, Li, and Ni (2013) where
a discrete-time mean-field LQ problem with a finite time horizon
was studied. As pointed out in Elliott et al. (2013), a typical
case for studying discrete-time systems is that the signal values
are available only for measurement or manipulation at certain
times, for example, a continuous time system is sampled at certain
times. In Elliott et al. (2013), the mean-field LQ optimal control
problem is formulated as an operator stochastic LQ optimal control
problem, and is solved using the kernel-range decomposition
representation of the expectation operator and its pseudo-inverse.
This formulationmay be viewed as an alternative to the variational
method. In this paper, we shall deal with the infinite horizon case
of mean-field LQ control. The content and the contribution of this
paper are presented in what follows.

Firstly, several notions of L2-stability for the control-free MF-
SDE (1.2) (B = B̄ = D = D̄ = 0) are introduced, and are shown
to be equivalent by using the discrete-time semigroup theory. In
addition, two notions about the stabilizability of system (1.2) are
introduced: the closed-loop L2-stabilizability and the open-loop
L2-stabilizability. Clearly, the closed-loop L2-stabilizability implies
the open-loop L2-stabilizability. Secondly, under appropriate con-
ditions, the optimal control in Uad (Problem (MF-LQ)) uniquely

exists, and is represented using the minimal nonnegative def-
inition solution to two coupled discrete-time algebraic Riccati
equations (AREs) (4.2). As a byproduct, it is shown that for (1.2)
the closed-loop L2-stabilizability is equivalent to the open-loop
L2-stabilizability. Thirdly, from theAREs (4.2),we construct another
ARE (5.8), from which the existence of the maximal solution of
the AREs (4.2) is easily achieved. In addition, it is shown that the
optimal control in Vad (Problem (MF-LQ*)) uniquely exists and is
represented using the maximal solution of the AREs (4.2). This re-
sult is more integrated than that in Huang et al. (2015), where the
maximal solution is only shown to be used to represent the corre-
sponding value function.Moreover, themaximal solution being the
stabilizing solution is completely characterized by theproperties of
the coefficients of system (1.2); for this, see Theorems 5.4 and 5.5.
To our best knowledge, this is the first such result for stochastic
AREs. Therefore, this result enriches the existing theory of stochas-
tic AREs, which is viewed as one of the main contributions of this
paper. It is valuable to mention that such result for determinis-
tic ARE (Corollary 5.3) is also new; for this, see Remark 5.4. Fur-
thermore, exact detectability is introduced. It is shown that the
minimal nonnegative definite solution is the stabilizing solution if
and only if the uncontrolled system [A, Ā; C, C̄ |Q , Q̄ ] is exactly de-
tectable. Under this detectability condition, the AREs (4.2) admit
one nonnegative definite solution.

The paper is organized as follows. The next section gives the
problem formulation. In Section 3, the stability and stabilizability
of MF-SDEs are studied. Section 4 gives a complete solution to
the infinite horizon mean-field LQ problem. In Section 5, the
nonnegative definite solutions are thoroughly investigated. Some
concluding remarks are given in Section 6.

2. Problem formulation

In (1.1) and (1.2), Q , Q̄ , A, Ā, C, C̄ ∈ Rn×n, R, R̄ ∈ Rm×m and
B, B̄,D, D̄ ∈ Rn×m are given constant deterministic matrices, and
E is the expectation operator. {xk, k ∈ N} and {uk, k ∈ N}

are the state process and control process, respectively, and ξ is
a square-integrable random variable. {wk, k ∈ N} represents
the stochastic disturbance, which is assumed to be a martingale
difference sequence in the sense that

E[wk+1|wl, l = 0, 1, . . . , k] = 0,

with bounded second-order conditional moments

E[(wk+1)
2
|wl, l = 0, 1, . . . , k] = 1. (2.1)

In this paper, we assume ξ and {wk, k ∈ N} are independent
of each other. Let Fk be the σ -algebra generated by {ξ, wl, l =

0, 1, . . . , k − 1}. Before proceeding, introduce a space of L2-
summable functions:

L2F (Rl) =

φ


φk ∈ Rl and is Fk-measurable, k ∈ N,
∞
k=0

E|φk|
2 < ∞

 ,

whereφ = (φ0, φ1, . . .). Clearly, L2F (Rl) is aHilbert space endowed

with norm ∥φ∥ =


∞

k=0 E|φk|
2
 1

2 , where |φk| = (φT
k φk)

1
2 . To

make the cost functional meaningful, we introduce the following
set of admissible controls u = (u0, u1, . . .):

Uad =

u ∈ L2F (Rm)

J(ξ ; u) < ∞

.

The optimal control problem studied in this paper is as follows.
Problem (MF-LQ). For any given initial value ξ , find a u◦

∈ Uad such
that

J(ξ ; u◦) = inf
u∈Uad

J(ξ ; u). (2.2)

Problem (MF-LQ) is a free end-point problem, as the end point of
the trajectory is free when k → ∞.



Download	English	Version:

https://daneshyari.com/en/article/695405

Download	Persian	Version:

https://daneshyari.com/article/695405

Daneshyari.com

https://daneshyari.com/en/article/695405
https://daneshyari.com/article/695405
https://daneshyari.com/

