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a b s t r a c t

We present a new design for continuous–discrete observers for a large class of continuous time nonlinear
time-varying systems with discrete time measurements. Using the notion of cooperative systems, we
show that the solutions of the observers converge to the solutions of the original system, under conditions
on the nonlinear terms and on the largest sampling interval. Our conditions are given by explicit
expressions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In real world applications, the state variables may be difficult
to measure. Such applications can often be modeled using systems
with outputs. Then one builds an observer for the state such that
the observation error between the observer value and the state
value converges to 0 as time goes to ∞. Much of the observers lit-
erature is under continuous measurements. See, e.g., Zemouche,
Boutayeb, and Bara (2008), which gives observers under continu-
ous state measurements, by expressing the differential equation
satisfied by the estimation error in terms of a linear parameter
varying system.

However, in many engineering applications, measurements are
collected at discrete times. This produces continuous–discrete
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systems, where the dynamics are continuous time but the output
measurements are only available at discrete instants. There is a
large literature, spanning over 40 years, onways to build observers
for continuous–discrete systems. See, e.g., Jazwinski (2007), which
used a continuous–discrete Kalman filter to solve a filtering
problem for stochastic continuous–discrete time systems.

The high gain observer in Gauthier, Hammouri, and Othman
(1992) was adapted to continuous–discrete systems in Deza,
Busvelle, Gauthier, and Rakotopara (1992), where the correction
gain of the impulsive correction is obtained by integrating a con-
tinuous–discrete time Riccati equation. The robustness of ob-
servers with respect to discretization was studied in Arcak and
Nesic (2004). See also Ahmed-Ali, Van Assche, Massieu, and Dor-
leans (2013), Farza et al. (2013) and Karafyllis and Kravaris (2009)
for observers based on output predictors and Andrieu and Nadri
(2010), Deza et al. (1992), Hammouri, Nadri, and Mota (2006),
Karafyllis and Kravaris (2012), Mazenc and Dinh (2013, 2014),
Tellez-Anguiano et al. (2012); and see Ahmed-Ali, Karafyllis, and
Lamnabhi-Lagarrigue (2013), which presents results that allow de-
layed and sampledmeasurements. Thework Ahmed-Ali, Postoyan,
and Lamnabhi-Lagarrigue (2009) builds continuous–discrete ob-
servers for nonlinear systems, where the input acts on the system
to satisfy a persistent excitation condition, while Nadri and Ham-
mouri (2003) covers systems with known inputs and which are
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linear in the state. The work Karafyllis and Kravaris (2009) shows
that if a system admits a suitable continuous time observer and
the observer satisfies certain robustness properties, then one can
augment the observer by a new output predictor system to pro-
duce a continuous–discrete observer. Also, Karafyllis and Kravaris
(2009) shows how this observer augmentation process applies to
key classes of linear and triangular globally Lipschitz systems. See
Remark 3 formore discussions on Astorga, Othman, Othman, Ham-
mouri, andMcKenna (2002); and Karafyllis and Kravaris (2009) for
continuous–discrete observers for an importantmodel of emulsion
polymerization reactors.

Here, we revisit Andrieu and Nadri (2010). We present a new
construction of continuous–discrete observers (which are also
called hybrid observers in the literature) for continuous time
Lipschitz systemswith discrete timemeasurements. Following the
approach in Andrieu and Nadri (2010) and Deza et al. (1992),
our continuous–discrete observer is obtained in two steps. First,
when nomeasurement is available, the state estimate is computed
by integrating the model. Then, when a measurement occurs,
the observer makes an impulsive correction to the estimate.
The work Andrieu and Nadri (2010) and Dinh, Andrieu, Nadri,
and Serres (2015) used this type of algorithm to show that
when no measurement occurs, the estimation error is a solution
to an unknown linear parameter varying system. This gave a
continuous–discrete analog of the continuous time measurement
approach from Zemouche et al. (2008), and makes it possible to
build a set that is guaranteed to contain all relevant solutions
for all nonnegative times. Using this set, certain correction terms
are designed to ensure that the estimation error asymptotically
converges to zero. However, Andrieu and Nadri (2010) and Dinh
et al. (2015) find the set by integrating a systemwith commutation,
which does not lead to an explicit analytic expression. This may
be an obstruction to using this type of approach in applications.
Here,weuse tools that are inspired byCacace, Germani,Manes, and
Setola (2012), Haddad, Chellaboina, and Hui (2010), Mazenc and
Dinh (2013) and Raissi, Efimov, and Zolghadri (2012). We obtain
analytical methods for constructing sets that are guaranteed to
contain the relevant trajectories. Our results are strong and may
be better suited to applications, since we allow nonlinearities in
the systems and because we prove robustness to perturbations in
the sampling schedule.

In the next section, we provide definitions. In Section 3, we
present our new results on framers, which are of independent
interest. In Section 4, we use our new results on framers to prove
our theorem on continuous–discrete observers. Our closed form
formulas for the framersmake it possible to check the assumptions
using linear matrix inequalities. We illustrate our main result
in Section 5, using a motor dynamics and a pendulum system,
which show how our approach can lead to a much larger maximal
allowable measurement stepsize than was reported in Dinh et al.
(2015). In Section 6, we summarize the value added by our work
and suggest possible topics for follow-up research.

For a tutorial paper on the theory of continuous–discrete
observers that states results from this and other recent papers
(without giving their proofs and also without the examples we
provide below) and also contains a generalization of Lemma 3, see
Mazenc, Andrieu, and Malisoff (2015).

2. Notation, definitions, and basic result

Throughout the sequel, we omit arguments of functions when
the arguments are clear from the context. We set N = {1, 2, . . .}.
For any k and n in N, the k × n matrix all of whose entries are
0 will also be denoted by 0, and we use A = [ai,j] to indicate
that an arbitrary matrix A ∈ Rk×n has ai,j in its ith row and jth
column for each i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , n}. The usual

Euclidean norm of vectors, and the induced norm of matrices, of
any dimensions are denoted by | · |, and I is the identity matrix in
the dimension under consideration. All inequalities and maxima
must be understood to hold componentwise, i.e., if A = [ai,j] and
B = [bi,j] are matrices of the same dimensions, then we use A ≤ B
to mean that ai,j ≤ bi,j for all i and j, and max{A, B} is the matrix
C = [ci,j]where ci,j = max{ai,j, bi,j} for all i and j. A squarematrix is
called cooperative orMetzler provided all of its off-diagonal entries
are nonnegative. Recall that the Schur complement of a symmetric
matrix of the form

X =


A B
B⊤ C


with an invertiblematrix A is S = C −B⊤A−1B, where⊤means the
transpose. The following is well known: X is positive definite if and
only if A and S are both positive definite. For each r ∈ N and each
function F : [0,∞) → Rr , we set F (t−) = lims→t,s<t F (s) for all
t > 0. For anymatrices A and B in Rn×n, we use A 4 B (resp., A ≻ B)
tomean that X⊤(A−B)X ≤ 0 for all X ∈ Rn (resp., X⊤(A−B)X > 0
for all X ∈ Rn

\ {0}). Therefore, ≽ has a different meaning from the
partial order ≥ on matrices.

A system ẋ(t) = f (t, x(t)) whose solution is uniquely defined
on [t0,∞) for each initial condition x(t0) and each t0 ≥ 0 is called
nonnegative provided that for each initial condition satisfying
x(t0) ≥ 0, the solution x(t) is nonnegative for all t ≥ t0. The
following lemma is a direct consequence of Haddad et al. (2010,
Proposition 2.2):

Lemma 1. Consider any system of the form

ż(t) = A(t)z(t)+ B(t) (1)

with state space Rn, where A : R → Rn×n and B : R → Rn are
continuous. Assume that for all t ≥ 0, the matrix A(t) is Metzler and
B(t) ≥ 0. Then (1) is nonnegative.

3. Preliminary result on framers

In this section, we present preliminary results on framers for
linear systems that we use in the next section to design our
observers for nonlinear systems. We consider any linear time-
varying system of the form

ẋ(t) = M(t)x(t) (2)

with state space Rn, where all entries of M : [0,∞) → Rn×n are
continuous. Let ϱ : R2

→ Rn×n denote the fundamental solution
of (2). Then, ∂

∂t ϱ(t, t0) = M(t)ϱ(t, t0) and ϱ(t0, t0) = I hold for
all t0 ≥ 0 and t ≥ t0. In this section, we provide componentwise
lower and upper bounds for Γ (t) = ϱ(t, 0). Notice for later use
that the unique solution φ(·, x0) of the initial value problem

(∂φ/∂t)(t, x0) = M(t)φ(t, x0), φ(0, x0) = x0 (3)

satisfies φ(t, x0) = Γ (t)x0 for all t ≥ 0 and x0 ∈ Rn.

3.1. Bounds for cooperative linear systems

We first present a preliminary result on framers, which we
use in the next subsection to prove our main result on framers.
Throughout this subsection, we assume:

Assumption 1. There are two constant Metzler matrices M ∈

Rn×n and M ∈ Rn×n such that

M ≤ M(t) ≤ M (4)

hold for all t ≥ 0. Also, M is continuous.
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