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a b s t r a c t

This paper investigates the use of non-linear structural dynamics computational models
with multiple levels of fidelity for the calibration of input-dependent model parameters.
Non-linear behavior complicates the calibration of model parameters that are input-
dependent (i.e., functions of temperature, loading, etc.). Different types of models may also
be available for the estimation of unmeasured system properties, with different levels of
physics fidelity, mesh resolution and boundary condition assumptions. To infer these sys-
tem properties, Bayesian calibration can be used to combine information from multiple
sources (such as experimental data and prior knowledge) and comprehensively quantify
the uncertainty in the model parameters. Estimating the posterior distributions is done
using Markov Chain Monte Carlo sampling, which requires a large number of computa-
tions, thus making the use of a high-fidelity model for calibration prohibitively expensive.
On the other hand, use of a low-fidelity model could lead to significant error in calibration
and prediction. Therefore, this paper pursues a multi-fidelity approach for input-
dependent model parameter calibration with a surrogate of the low-fidelity model cor-
rected using higher fidelity simulation data. The effects of non-linear behavior and
input-dependence of model parameters and measurements are systematically organized
and distinguished using a Bayesian network. The methodology is illustrated with a curved
panel, subjected to acoustic and thermal loading, where the damping properties of the
panel could be functions of the acoustic loading and temperature magnitudes. Two models
(a frequency response analysis and a full time history analysis) are combined to estimate
the damping characteristics of the panel. The effect of the temperature on the performance
of the strain gages and therefore on the calibration results is also studied.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

With advances in computational technology, there is increasing opportunity and demand for high-fidelity dynamic sim-
ulations that allow performance prediction under normal as well as extreme operating conditions. In hypersonic aircraft
simulations for example, Candler et al. [1–2], Higgins and Schmidt [3], and others have explored high-fidelity models. Sub-
stantial work has also been reported in developing reduced-order models that are cheaper and faster to run [4–6]. These
high-fidelity simulations, as well as the reduced-order models, are useful only when they accurately represent the actual
physics that cause the observed behavior [7]. This is of particular concern in the presence of non-linear behavior [8–9].
Attempts at developing non-linear reduced-order models have been reported [10]. For example, Perez and Mignolet [11]
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used a non-linear static analysis at specific input conditions to capture geometrical non-linearity in panels subjected to
acoustic and thermal loading. On the other hand, high-fidelity non-linear analyses are often prohibitively expensive to run.

One necessary step in obtaining a model that accurately represents reality is model calibration, i.e., quantifying the errors
and estimating the unknown model parameters to minimize the difference between the model outputs and experimental
observations. Christie et al. [12] argue that knowledge about the state of a complex system and the governing physical pro-
cesses is often incomplete and/or erroneous, and propose building error models. Uncertainty in model prediction arises from
multiple sources: (1) natural variability (irreducible, aleatory uncertainty), generally modeled by assigning probability dis-
tributions to the variables, (2) statistical uncertainty (reducible, epistemic uncertainty) arising from sparse and/or imprecise
data, and (3) model uncertainty (reducible, epistemic uncertainty), which is due to uncertainty in model parameters, model
form error, and solution approximations [13]. The solution approximation errors arise due to reduced order models, surro-
gate models, discretization errors, truncation and round off. Liang and Mahadevan [14] proposed a systematic methodology
to quantify various error and uncertainty sources in model prediction. Three approaches are generally used in the calibration
of model parameters with input-output data: least squares, maximum likelihood, and Bayesian calibration. Bayesian calibra-
tion combines both prior (subjective) information and experimental data, and quantifies the epistemic uncertainty in the
calibration result. Kennedy and O’Hagan [15] included a discrepancy function between the model prediction and the exper-
imental data during Bayesian calibration. Including appropriate model discrepancy functions has been shown to improve the
calibration of model parameters [16].

Bayesian model calibration is often numerically accomplished with Markov Chain Monte Carlo (MCMC) sampling when
analytical solutions are not available, which requires thousands of samples. The cost is further amplified for problems with a
large number of parameters, or when the model output is far from the experimental data (thus requiring a large number of
samples to achieve convergence). Therefore, an inexpensive surrogate model is often used to replace the original simulation
model and reduce the computational expense in Bayesian calibration. However, building a surrogate model requires training
points, which are generated by running the original model at a certain number of input conditions. If the original high-
fidelity model is expensive, this may limit the number of training points, thus reducing the accuracy of the surrogate model.
On the other hand, if a lower fidelity model is available, this may help to generate many training points, but the accuracy of
the resulting surrogate model would be questionable due to the use of the lower fidelity model runs.

Fusion of information from models of different fidelity has been significantly investigated in forward problems and in
optimization frameworks. Haftka [17] and Hutchison et al. [18] scaled the low fidelity data with a high to low fidelity ratio
to improve the low fidelity surrogate model. Kennedy and O’Hagan [19] combined surrogate models of different fidelity
using an autoregressive approach. Leary et al. [20] trained local artificial neural networks and kriging interpolations using
the distance between the high fidelity and low fidelity data. Robinson et al. [21] investigated fusing information frommodels
of different fidelity for optimizing the surrogate model using a trust-region approach. The focus in our paper is on calibration
within the multi-fidelity framework. In the context of model calibration, Absi and Mahadevan [22] fused information from
models of different fidelities in the calibration of system parameters. The approach consists of first correcting a low-fidelity
surrogate model using a small number of high-fidelity simulations, thus effectively creating physics-informed stronger pri-
ors from that correction to use in the final calibration with experimental data.

Further complications in calibration arise in the presence of nonlinear behavior. Typical sources of non-linearity in struc-
tural dynamics are geometric non-linearity (due to large deformations), material non-linearity (non-linear stress/strain con-
stitutive law, strain hardening), damping dissipation (dry friction – contact and sliding between bodies, and hysteretic
damping [23] effects), boundary conditions (e.g., surface/fluid interactions), external non-linear body forces (e.g., hydrody-
namic forces, temperature), etc. [24]. Model parameters in such situations could be input-dependent. Calibration considering
input-dependent system parameters has been referred to as functional calibration. Pourhabib and Balasundaram [25]
showed that calibration of parameters that are input-dependent is a curve-to-surface matching problem, and used a sum
of splines to represent that relationship. Plumlee et al. [26] considered calibration parameters as analytical functions of
inputs to replace previously used empirical definitions (data fitting by least squares) in the ion channel models of cardiac
cells. Brown and Atamturktur [27] used a nonparametric approach to calibrate input-dependent system parameters, in
which a Gaussian Process (GP) model is used to represent the relationship between the parameters and the input.

In real application problems, many challenges arise in the experimental, modeling and calibration stages. In experiments,
replicating the natural phenomena in laboratory settings while preserving the quality of the recorded data is difficult, espe-
cially in the presence of high temperature, which could negatively affect the recording devices such as strain gages. Modeling
the experimental setting also brings high uncertainty in capturing all the present physical phenomena. The increased num-
ber of parameters makes effective calibration hard, especially when a low number of experimental data is available. Complex
interactions can lead to having nonlinearity and input-dependence simultaneously active, thus there is a need to distinguish
between these effects in the calibration process.

The aim of this study is to extend our approach of fusing information frommodels of different levels of fidelity to Bayesian
calibration of input-dependent model parameters. In this paper, we consider geometric nonlinearity (effect of large defor-
mations) and material non-linearity (nonlinear stress-strain relationships that can also be temperature dependent) in the
modeling phase that are distinguished from the input-dependence of the parameters. We assume a functional dependence
between the inputs and the parameters, organize them in a Bayesian network, and use a multi-fidelity calibration approach
to update the coefficients of these functional relations (i.e., the hyper-parameters). We also include the effect of different
types of inputs on the sensors (i.e., strain gages) and use realistic experimental data to illustrate the benefits of this approach.
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