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a b s t r a c t

Importance measures of multi-state systems have been intensively investigated from dif-
ferent perspectives in the past few years as the results are able to provide a valuable guid-
ance for effective reliability improvement and enhancement. The state assignment is
oftentimes conducted to identify the state of a multi-state system when features and/or
knowledge related to the health condition of the particular system are collected.
However, due to the scarcity of sensor data, limited accuracy of sensing techniques, and
vague/conflicting judgments from experts, conducting the state assignment is imprecise
and inevitably produces epistemic uncertainty. In this paper, some composite importance
measures of multi-state systems are extended by considering the epistemic uncertainty
associated with component state assignment. To take account of such epistemic uncer-
tainty, the proposed method contains three basic steps: (1) propagate the epistemic
uncertainty associated with component state assignment to the reliability function of a
multi-state system by dynamic evidential network models, (2) evaluate the intervals of
the conditional reliability by inputting hard evidences and/or vacuous evidence into the
tailored dynamic evidential network models, and (3) compute the extended composite
importance measures by constructing a pair of optimization problems and properly han-
dling the dependency among input intervals. A numerical example of a multi-state bridge
system together with an engineering example of a feeding control system of CNC lathes is
exemplified to demonstrate the impact of the epistemic uncertainty on the importance
measures of components and their rankings.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Importance measures are effective tools to identify the weak components of an engineered system from the reliability
and/or structure perspectives [1]. The results gained from importance measures can provide valuable insights to reliability

https://doi.org/10.1016/j.ymssp.2018.02.021
0888-3270/� 2018 Elsevier Ltd. All rights reserved.

Abbreviations: MSS, Multi-State System; ET, Evidence Theory; TBM, Transferable Belief Model; EMC, Evidential Markov Chain; EN, Evidential Network;
DEN, Dynamic Evidential Network; CIM, Composite Importance Measure; CBIM, Composite Birnbaum Importance Measure; MRAW, Multi-state
Reliability Achievement Worth; MRRW, Multi-state Reliability Reduction Worth; MFV, Multi-state Fussel-Vesely; E-CIM, Extended Composite Importance
Measure; E-CBIM, Extended Composite Birnbaum Importance Measure; E-MRAW, Extended Multi-state Reliability Achievement Worth; E-MRRW,
Extended Multi-state Reliability Reduction Worth; E-MFV, Extended Multi-state Fussel-Vesely.
⇑ Corresponding author. Postal Address: No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, PR China.

E-mail address: yuliu@uestc.edu.cn (Y. Liu).

Mechanical Systems and Signal Processing 109 (2018) 305–329

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier .com/locate /ymssp

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2018.02.021&domain=pdf
https://doi.org/10.1016/j.ymssp.2018.02.021
mailto:yuliu@uestc.edu.cn
https://doi.org/10.1016/j.ymssp.2018.02.021
http://www.sciencedirect.com/science/journal/08883270
http://www.elsevier.com/locate/ymssp


improvement and maintenance planning of a system [1,2]. Many importance measures have been developed from various
angles [1], and they have been successfully implemented to complex engineered systems, such as nuclear power plant
[3], mechanism models [4], reconfigurable systems [5], and so forth.

Among the existing reliability importance measures, the Birnbaum importance measure was the most popular one used
for system reliability design [6]. The Birnbaum importance measure quantifies the most critical component to the system
reliability. Other reliability importance measures, such as the Risk Reduction Worth (RRW), Risk Achievement Worth
(RAW), and the Fussell-Vesely importance measure (FV) [7], were also studied from different implications of reliability
improvement or decrease. More recently, Natvig et al. [8] presented a new importance for repairable and non-repairable sys-
tems. Zio et al. [9] studied a joint importance measure based on the partial derivative on the reliability of a group of com-
ponents. Peng et al. [10] introduced a criticality measure for degrading components. Alieea et al. [11] proposed a new
Birnbaum importance to non-coherent systems. Kuo and Zhu [1,12] summarized the importance measures into c-types
and p-types, and they applied importance measures to the component assignment problem (CAP). Nevertheless, the tradi-
tional importance measures were based on the premise that a system and its components can only be in one of only two
possible states, either fully functioning or completely failed.

As engineered systems become more sophisticated, the traditional reliability methods for binary-state systems, however,
fail to characterize the complicated deteriorating process of systems with multi-state nature. By introducing more than two
states, from completely functioning down to completely failed, multi-state system (MSS) models are able to more accurately
characterize the complicated behaviors of a system [13–15]. In the context of MSSs, many novel approaches, such as the
simulation-based method [3,16,17], the multi-valued decision diagram method [18,19], the stochastic processes [15], the
universal generating function [20], and the recursive algorithm [21], have been developed to facilitate the reliability assess-
ment of MSSs. The importance measures of MSSs have also received considerable concerns, and a set of new importance
measures of MSSs have been defined from various perspectives. Griffith [22] firstly introduced the concept of multi-state
system performance, and studied an importance measure to quantify the MSS performance improvement due to the com-
ponent performance improvement. Levitin and Lisnianski [23] proposed a partial derivative method to examine how a com-
ponent performance may influence the availability of an MSS. Levitin et al. [24] introduced a new MSS importance measure
based on the performance restriction. Zio and Podofillini [3] presented Birnbaum, Fussell-Vesely, RAW, RRW unavailability
measures for MSSs. In their study, the Monte-Carlo simulation (MC) was used to emulate the stochastic behaviors of multi-
state components. Ramirez-Marquez and Coit [2] proposed composite importance measures (CIMs) to analyze how a specific
multi-state component may affect the reliability of an MSS. Lisnianski et al. [25] studied a new sensitivity measure for aging
components based on the definition of importance measures. Si et al. [26] put forth an integrated importance measure of
multi-state systems to study how the transition intensities of components affect the loss of system performance. Dui
et al. [27] proposed a cost-based integrated importance measure for the preventive maintenance of MSSs. Among all the
existing importance measures of MSSs, CIMs proposed by Coit [2] have received the most widespread applications, such
as the network allocation [4], network resilience [28], power industry [29], and so forth, because they are capable of eval-
uating the influence of all the states of a particular component, not a single state, on the reliability of an MSS. Our focus
on this work is placed on the CIMs due to their popularity in a sizable amount of engineering applications.

Nevertheless, epistemic uncertainty, caused by lack of sufficient data and vague/conflicting knowledge, is inevitable in
engineering practices, and manipulating epistemic uncertainty is a challenging task to reliability assessment of complex sys-
tems [30,31]. Some non-probabilistic methods were used to represent epistemic uncertainty, such as the evidence theory
(ET) [32,33], the fuzzy set theory [34], the interval theory [35], and the imprecise probability theory [36]. Generally, the
ET, as one of the representations of epistemic uncertainty, have received considerable attentions in the field of information
fusion [37], fault diagnosis [38,39], decision making [40] and so forth. Some attempts have been made to study the influence
of epistemic uncertainty on the reliability analysis of MSSs in the context of the ET. Sallak [41] generalized the universal
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CðtÞ the state combination of all the components at time instant t
/ð�Þ system structure function
ACl
j component Cl in state j

AClðtÞ
j component Cl in state j at time instant t

SCl
state space of component Cl

mðACl
j jACl

i Þ
transition mass of component Cl transiting from state i to state j within a basic time interval

mCl ðtÞ mass distribution of component Cl at time instant t
ConðAClðtÞ

j Þ
conditional reliability at time instant t on condition that component Cl in state j

RðtÞ system reliability at time instant t
PRðAClðtÞ

j Þ partial reliability of a system at time instant t
PDfa > bg the degree of preference of the interval a over the interval b
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