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a b s t r a c t

A novel method called hyper-spherical distance discrimination (HDD) is proposed in order
to meet the requirement of aero-engine rolling bearing on-line monitoring. In proposed
method, original multi-dimensional features extracted from vibration acceleration signal
are transformed to the same dimensional reconstructed features by de-correlation and nor-
malization while the distribution of feature vectors is transformed from hyper-ellipsoid to
hyper-sphere. Then, a simple model built up by distance discriminant analysis is used for
rolling bearing fault detection and degradation assessment. HDD is compared with the sup-
port vector data description (SVDD) and the self-organizing map (SOM) in rolling bearing
fault simulation experiments. The results show that the HDD method is superior to the
SVDD and SOM in terms of recognition rate. Besides, HDD is applied to a run-to-failure test
of aero-engine rolling bearing. It proves that the evaluating indicator obtained by HDD
method is able to reflect the degradation tendency of rolling bearing, and it is also more
sensitive to initial fault than the root mean square (RMS) of vibration acceleration signal.
With the advantages of low computational complexity and no need to tuning parameters,
HDD method can be applied to practical engineering effectively.

� 2018 Published by Elsevier Ltd.

1. Introduction

Rolling bearing failure is one of the leading causes of aviation accidents. In order to maintain aero-engine uptime at the
highest possible level and reduce maintenance costs, maintenance should be carried out in a proactive way. It means a trans-
formation of maintenance strategy from the traditional fail-and-fix practices (diagnostics) to a predict-and-prevent method-
ology (prognostics) [1]. However, predict-and-prevent methodology is based on effective condition monitoring technology.

Condition monitoring data are very versatile, including vibration data, acoustic data, oil analysis data, etc. Vibration data
collection is a widely used approach for fault detection [2–4]. However, the sensitivity of various original features that are
characteristics of bearing performance may vary significantly under different working conditions [5]. Hence, it is critical to
devise an evaluating indicator that provides a useful and automatic guidance on using the most effective features for bearing
degradation assessment without human intervention.
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Generally, fault detection and condition monitoring of the aero-engine rolling bearings should be considered as a data
domain description problem (also called one-class classification), in view of that the fault samples are hard to be acquired
in engineering. That is, when nothing about the outlier distribution can be assumed, only a description of the boundary of the
target class can be made [6]. Since the on-line monitoring of aero-engine rolling bearing can be regarded as a data domain
description problem, it is necessary to study the distribution of multidimensional feature vectors in space in order to estab-
lish a more accurate model by greater using the prior knowledge. The distribution of feature vectors cannot be visualized
because the dimensionality of feature vectors is usually more than three, but its two-dimensional (2-D) projection can be
easily study. If the projection on each 2-D feature plane tends to an ellipse, we can infer that the distribution of feature vec-
tors in high-dimension space tends to a hyper-ellipsoid. When different features are chosen, length and direction of the
hyper-ellipsoid principal axis may change. Hence a strongly nonlinear algorithm is needed for describing such a complicated
distribution. Different methods have been developed to solve this problem such as SVDD [7–9], SOM [10–12], gaussian mix-
ture model (GMM) [5,13], etc, and have been proved effective in experiments. However, these methods have a deficiency of
high computational complexity when training. The bearing detection model is envisioned to reside in the engine controller
and operates on-board. The engine controller has to carefully prioritize and distribute computing resources among multiple
processes to ensure the safety of the critical tasks such as flight and engine controls. Therefore, a simple fusion model is
strongly preferable to a computationally complex one [14].

According to above analysis, the limited computing resources in engineering and the complexity of the model constitute a
contradiction. The reason why the models of high computational complexity are chosen is because the described boundary is
complicated. So if it is possible to improve the spatial distribution of feature vectors, then it is possible to greatly simplify the
algorithm describing the boundary of the data domain. Based on this, a novel method called hyper-spherical distance dis-
crimination (HDD) is proposed. Compared with some typical data domain description like SVDD, SOM etc., HDD has the
advantages of low computational complexity and no need to tuning parameters during the training stage. In this study,
we implemented HDD on aero-engine rolling bearing monitoring.

The remaining part of the paper is organized as follows. Section 2 introduces the multi-dimensional features used in fol-
lowing sections and briefly describes how to extract these features. In Section 3, two kinds of experiments (including exper-
iment 1: rolling bearing fault simulation experiment and experiment 2: run-to-failure test) were carried out and the
distribution of original feature vectors is discussed in detail. The discussion reveals a potential approach for simplifying
the distribution. Section 4 proposes a novel method for bearing fault detection and degradation assessment. Section 5 shows
the results of two experiments. The performance of proposed method under different operating conditions and different
measurement points is compared with SVDD and SOM. Section 6 discusses some problems in detail. Finally, conclusions
are made in Section 7.

2. Feature extraction

2.1. Time-domain features

Six dimensionless time-domain features used in this study are summarized in Table 1, including shape indicator TSI, crest
indicator TCI, impulse indicator TMI, clearance indicator TCLI, kurtosis TKU and skewness TSK, where yi is raw waveform data, ypi
is the maximum absolute value of each section where the raw waveform data is divided into 10 sections.

2.2. Frequency-domain features

Three dimensionless frequency-domain features used in this study are summarized in Table 2, including frequency center
FFC, mean square of frequency FMSF and variance of frequency FVF, where S(fi) is the spectral amplitude at frequency fi.

Table 1
Dimensionless time-domain features.
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Table 2
Dimensionless time-domain features.

Frequency center Mean square frequency Variance of frequency
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