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a b s t r a c t

This paper presents an expression of mutual information that defines the information gain in planning
of sensing resources, when the goal is to reduce the forecast uncertainty of some quantities of interest
and the system dynamics is described as a continuous-time linear system. The method extends the
smoother approach in Choi and How (2010b) to handle a more general notion of the verification
entity—continuous sequence of variables over some finite time window in the future. The expression
of mutual information for this windowed forecasting case is derived and quantified, taking advantage
of an underlying conditional independence structure and utilizing a two-filter formula for fixed-interval
smoothing with correlated noises. Two numerical examples on (a) a two-state linear system with time-
varying one-way coupling dynamics, and (b) idealizedweather forecastingwithmoving verification paths
demonstrate the validity of the proposed quantification methodology.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Planning on utilization of sensing resources to gather informa-
tion out of an environment has been spotlighted in many contexts,
the objective of this planning often being uncertainty reduction of
some entities of interest—termed verification entities herein. Mu-
tual information has been one of themost popularmetrics adopted
to define/represent this objective in various contexts: tracking of
kinematic variables ofmoving targets throughmeasurement along
mobile sensor trajectories (Grocholsky, 2002; Hoffmann & Tomlin,
2010), weather forecast improvement over some region of inter-
est in the future with UAV sensor networks (Choi & How, 2010b,
2011a,b), accurate prediction of a spatially distributed field de-
scribed by Gaussian processes (Krause, Singh, & Guestrin, 2008),
informativemanagement of deployed fixed sensor networks (Choi,
How, & Barton, 2013; Choi & Lee, 2015; Lee, Teo, Lim, & B, 2001;
Williams, Fisher III, & Willsky, 2007), adaptive landmark selection
in simultaneous localization and mapping of mobile robots (Kret-
zschmar & Stachniss, 2012), and Bayesian belief propagation over
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the grid-based search space (Julian, Angermann, Schwager, & Rus,
2012). Progresses in computation of mutual information in various
formalism (Duncan, 1970; Guo, Shamai, & Verdu, 2005; Kadota, Za-
kai, & Ziv, 1971; Lee et al., 2001; Mitter & Newton, 2005; Newton,
2006, 2007; Zakai, 2005) have also contributed to this popularity
of mutual information in these applications.

While many of these mutual information-based planning stud-
ies have dealt with the case where the verification time is same or
just one time-step further of the planning horizon, there is a class
of problem termed informative forecasting that takes particular care
for the casewhere the verification time is significantly greater than
the mission horizon. Although less popular in the literature, the
informative forecasting problem can handle applications such as
(i) adaptive sampling in the context of numerical weather predic-
tion that considers design of sensor networks deployed in the near
future (e.g., in 24 h) while the goal is to improve forecast in the far
future (e.g., 3–5 days later), and (ii) prediction of indoor contam-
inant distribution in some future time with wireless indoor sen-
sor networks taken over short period of time. The authors have
presentedmethods to efficiently but correctly quantify the mutual
information in this context of informative forecasting for discrete
selection case (Choi & How, 2011b), discrete constrained path de-
sign (Choi&How, 2011a), and continuous trajectory planning (Choi
& How, 2010b), taking advantage of underlying properties of mu-
tual information.

This paper extends the approach in Choi and How (2010b) in
that a more general notion of verification quantities is introduced.
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For some applications, it makes more sense to reduce uncertainty
in the entities of interest over some finite window of time in-
stead of a single particular time instance (for example, weather
forecast over the weekend). The smoother form in Choi and How
(2010b) cannot directly be used for thiswindowed forecasting case,
because the mutual information between two continuous ran-
dom processes (as opposed to one finite-dimensional random vec-
tor and one random process) needs to be calculated. This paper
presents a formula for the mutual information for this windowed
forecasting that is indeed quite similar to the form in Choi and
How (2010b), while the only difference is in the process of calcu-
lating the conditional initial covariance conditioned on the verifi-
cation entity. A two-filter form Kalman smoothing formula with
correlated noise in Fujita and Fukao (1970) is adapted for this cal-
culation. Two numerical examples are presented to validate the
proposed method in terms of necessity and applicability. While a
preliminary work (Choi & How, 2010a) proposed a relevant con-
cept of the windowed forecasting, this article presents elaborated
and corrected theoretical results for a more general problem set-
ting and also provides much more sophisticated numerical case
studies.

2. Problem description

2.1. Continuous-time linear system model

Consider the dynamics of objects/environment of interest with
a finite dimensional state vector Xt ∈ RnX that is described by the
following linear (time-varying) system:

dXt = A(t)Xtdt + B(t)dWt (1)

whereWt is an nW -dimensional zero-mean Brownian motion pro-
cess satisfying E[(Wt1 − W0)(Wt2 − W0)

′
] =

 min{t1,t2}
0 ΣW (s)ds

with positive-definite ΣW . The prime sign (′) throughout the pa-
per denotes the transpose of a matrix. The initial condition of the
state, X0 is normally distributed as X0 ∼ N (µ0, P0), P0 ≻ 0.

An RnZ -valued continuous-time measurement process is given
by

dZt = C(t)Xtdt + dNt (2)

where Nt is a nZ -dimensional Brownian motion process with
E[(Nt1−N0)(Nt2−N0)

′
] =

 min{t1,t2}
0 ΣN(s)dswithpositive-definite

ΣN , which is independent ofXt andWt . The initial value of themea-
surement process Z0 is assumed to be normally distributed with
covariance E[Z0Z ′

0] = Γ0 ≻ 0; this initial value summarizes all
the information collected before the initial time (Mitter & Newton,
2005).2 Also, a measurement path over the time window [t1, t2] is
defined as

Z[t1,t2] = {Zt : t ∈ [t1, t2]}. (3)

Definition 1. The verification variables are a (possibly time-vary-
ing) linear combination of the state variables whose uncertainty
reduction is of interest:

Vt = MV (t)Xt ∈ RnV (4)

with MV (t) ∈ RnV ×nX termed as verification matrix, which is
assumed to be differentiable herein. A continuous sequence of
(time-varying) verification variables, termed verification path, is
also defined as:

V[t1,t2] = {Vt : t ∈ [t1, t2]}. (5)

2 Note that this definition of measurement process is an integral of the
measurement defined in the authors’ prior work (Choi & How, 2010b) in which no
information is assumed from the negative time.

2.2. Informative pointwise forecasting (IPF)

One case of interest is when the verification entity is the verifi-
cation variables at some fixed verification time, T . In this case, the
informative forecasting problem can be written as the following
optimization:

max
C(t)∈C:t∈[0,τ ]

I(VT ; Z[0,τ ]) (IPF)

with some τ ∈ [0, T ], where C represents a set of admissible ob-
servation functions defined by the characteristics of sensors, and
I(Y1; Y2) denotes the mutual information between two random
quantities Y1 and Y2 (e.g. randomvariables, randomprocesses, ran-
dom functions). Note that (2) defines a direct relation between the
observationmatrix C(t) to themeasurement process Zt ; thus, (IPF)
finds the (continuous) sequence of C(t) over [0, τ ] that is expected
to result in largest reduction of entropy in VT when noisymeasure-
ment is taken accordingly.

Exploiting conditional independence, we proposed an expres-
sion for themutual information, I(VT ; Z[0,τ ]), as the difference be-
tween the unconditioned and the conditioned mutual information
for the filtering problem (Choi & How, 2010b):

I(VT ; Z[0,τ ]) = I(Xτ ; Z[0,τ ]) − I(Xτ ; Z[0,τ ]|VT ). (6)

With (6), the smoother form of the mutual information for
forecasting is derived as

I(VT ; Z[0,τ ]) = J0(τ ) −
1
2 ldet(I + QX (τ )∆S(τ )) (7)

with J0 , 1
2 ldetSX |V −

1
2 ldetSX and ∆S , SX |V − SX , where ldet

stands for log det of a positive definitematrix. Thematrices SX (τ ) ,
Cov−1(Xτ ), SX |V (τ ) , Cov−1(Xτ |VT ), and QX (τ ) , Cov(Xτ |Z[0,τ ])
are determined by the following matrix differential equations:

ṠX = −SXA − A′SX − SXBΣWB′SX (8)

ṠX |V = SX |VBΣWB′SX |V − SX |V (A + BΣWB′SX )
− (A + BΣWB′SX )′SX |V (9)

Q̇X = AQX + QXA′
+ BΣWB′

− QXC ′Σ−1
N CQX (10)

with initial conditions SX (0) = P−1
0 , SX |V (0) = P−1

0|V , and QX (0) =
P−1
0 + C(0)′Γ −1

0 C(0)
−1

. The initial value of the Riccati matrix
QX (0) takes a different value from the authors’ prior work (Choi
& How, 2010b), as herein the information collected from negative
times is also incorporated as suggested in Mitter and Newton
(2005). The conditional initial covariance P0|V , Cov(X0|VT ) ≻ 0
can be calculated in advance by a fixed-point smoothing process,
or simply by

P0|V = P0 − P0Φ ′

(T ,0)M
′

V


MVPX (T )M ′

V

−1 MVΦ(T ,0)P0
where Φ(t2,t1) is the state transition matrix from t1 to t2, which
becomes eA(t2−t1) for a time-invariant case.

In Choi and How (2010b), we demonstrated that the smoother
form is preferred to the filter form, which explicitly calculates the
prior and the posterior entropies of VT by integrating the Lyapunov
and the Riccati equation over [0, T ], in terms of the computational
efficiency and accessibility to on-the-fly knowledge of information
accumulation.

2.3. Informative windowed forecasting (IWF)

This paper newly considers a more general version of the in-
formative forecasting problem where the entity of interest is a
verification path over some time window [Ti, Tf ]. This generalized
problem can be written as:

max
C(t)∈C:t∈[0,τ ]

I(V[Ti,Tf ]; Z[0,τ ]). (IWF)
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