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a b s t r a c t

This paper presents a computationally simple near-optimal filter for spacecraft motion estimation. This
is particularly important in applications where the computational resources are very limited, such as in
cube-satellite and nano-satellitemissions. The proposed filter consists of two scalar gains, and has analyt-
ically guaranteed performance under given bounds on the process and measurement noise covariances.
Unlike the Kalman filter or its variants, there is no associated covariance propagation. Favorable perfor-
mance of the presented filter, compared with a conventional extended Kalman filter, is demonstrated via
a hardware-in-the-loop simulation of a dual spacecraft formation navigation problem.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There are increasing efforts to make spacecraft more au-
tonomous in general. An enabling technology for this is the abil-
ity to estimate the spacecraft motion onboard in real-time. In
particular, much of the current effort is focused on absolute and
relative orbital motion estimation for spacecraft formations (Ar-
daens, D’Amico, & Cropp, 2013; D’Amico & Montenbruck, 2010;
Ebinuma, Bishop, & Lightsey, 2003; Ebinuma, Montenbruck, &
Lightsey, 2002; Eyer & Damaren, 2009; Gill, D’Amico, & Mon-
tenbruck, 2007). The benchmark algorithm for on-board motion
estimation is the Kalman filter and its variants (Crassidis & Junk-
ins, 2012; El-Sheimy, Nassar, Shin, & Niu, 2006).

A common present day assumption is that computational
power is no longer a limitation. Consequently, there is a general
trend toward increasing complexity of on-board state estimation
algorithms, with the goal of improving both estimation robustness
and performance. However, there is still real value in developing
and utilizing computationally simple algorithms when the space-
craft performance requirements allow for it. First, a number of past
space-system failures can be attributed to software errors (Harland

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Andrey V. Savkin
under the direction of Editor Ian R. Petersen.

E-mail address: aderuiter@ryerson.ca.
1 Tel.: +1 416 979 5000x4878; fax: +1 416 979 5056.

& Lorenz, 2005; Tafazoli, 2009). With the ever increasing complex-
ity of flight software, these failures are becoming more difficult to
predict, detect, isolate andmitigate. Second, simple algorithms are
more amenable to analysis with the ability to make conclusions
based on rigorous mathematical arguments, while this is more dif-
ficult or impossible to dowithmore complex algorithms. For exam-
ple, with some highly complex implementations of the extended
Kalman filter (D’Amico & Montenbruck, 2010) or its variants such
as the unscented Kalman filter (Crassidis & Junkins, 2012; Wolfe,
Speyer, Hwang, Lee, & Lee, 2007), there are no analytical guar-
antees of filter stability or consistency. As such, engineers must
embark on extensive numerical simulation campaigns in order to
assess filter convergence and steady-state performance. Finally, in
very small satellite applications (for example, cube-satellites and
nano-satellites), the onboard processors that are used are still typ-
ically quite primitive, with limited computational resources.

In this paper, a novel computationally simple continuous-
discrete filter is developed for spacecraft orbital motion estimation
based on position measurements. The filter contains two scalar
gains, and requires no covariance propagation. Each gain is
separated into two parts: a time-varying transient part, and a
constant steady-state part. The transient part of the gains is applied
for a pre-determinedperiod of time,with the objective of achieving
rapid filter convergence similar to the Kalman filter. After the
transient period, the gains are switched to the constant steady-
state part, and they provide the long-term filter stability and
performance. The filter is similar to the Kalman filter in that
it contains a linear correction term based on the measurement
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innovation. However, unlike the Kalman filter, the correction
is applied directly inside the state estimate propagation step,
rather than after the propagation step, resulting in an a-priori
filter (a one-step ahead predictor). This key difference allows
the filter’s stability and steady-state performance to be analyzed,
and analytically guaranteed steady-state performance bounds are
obtained. The effectiveness of the proposed filter is demonstrated
by applying it to a hardware-in-the-loop simulation for GPS-based
relative navigation for a close spacecraft formation.

2. Problem formulation

In this paper, the n×n identitymatrix will be denoted by In, the
n× nmatrix of zeros by 0n, and ∥x∥ denotes the Euclidean 2-norm
of the vector x ∈ Rn, while ∥X∥ denotes the induced 2-norm of the
matrix X ∈ Rn×m.

It is assumed that position measurements are available (for
example, from a GPS receiver), of the form

rm(tk) = r(tk) + nk, (1)

expressed in some reference frame of interestFx (common choices
are inertial or Earth-fixed frames). The vectors rm(tk) and r(tk)
represent respectively the measured and true spacecraft position
vectors at time instant tk, and nk is a zero-mean white noise
sequence with covariance E{nknT

j } = Rkδkj, where E{·} denotes
the expectation operator, δkj is the discrete delta function and Rk is
a symmetric positive definite matrix.

In Fx coordinates, the spacecraft translational equations of
motion are given by

ṙ(t) = v(t) − ω×

x (t)r(t),

v̇(t) = ag(r(t), t) − ω×

x (t)v(t) + ang(t) + wa(t), (2)

where v(t) is the spacecraft inertial velocity, ωx(t) is the
known inertial angular velocity of Fx, ag(r(t), t) is the spacecraft
gravitational acceleration, ang(t) is the modeled spacecraft non-
gravitational acceleration, wa(t) represents un-modeled acceler-
ations and modeling errors. For any a ∈ R3, the matrix a×

∈

R3×3 is the skew symmetric matrix such that a×b gives the cross-
product between a ∈ R3 and any other b ∈ R3. It is assumed
that ag(r, t) is continuously differentiable in r. Furthermore, the
gravitational acceleration is derivable from a potential function
φg(r, t) as ag(r, t)T = ∇φg(r, t) (Vallado, 2004). Consequently,
the Jacobian ∂ag(r, t)/∂r is symmetric. It is assumed thatwa(t) is a
zero-meanwhite noise processwith covariance E{wa(t)wa(τ )T } =

Q̄tδ(t − τ) where Q̄(t) is a symmetric positive semi-definite ma-
trix, and δ(t − τ) is the Dirac delta function. The following filter
structure is now imposed

˙̂r(t) = v̂(t) − ω×

x (t)r̂(t) + ur(t),

˙̂v(t) = ag(r̂(t), t) − ω×

x (t)v̂(t) + ang(t) + uv(t), (3)

where r̂ and v̂ are the estimates of r and v, respectively, and ur and
uv are control-like inputs, which are yet to be defined. The position
and velocity estimation errors are defined as r̃(t) = r(t) − r̂(t)
and ṽ(t) = v(t) − v̂(t) respectively. Using Eq. (1), the difference
between the measured and estimated position becomes

rm(tk) − r̂(tk) = r̃(tk) + nk, (4)

whichmay be used as an input for the filter in (3). It is assumed that
r̃ and ṽ are small, such that their dynamics are well described by
linearizing their dynamics about the estimates, r̂(t) and v̂(t). Using
Eqs. (2) and (3), the linearized error dynamics take the form

ẋ(t) = Ax(t) + Ã(t)x(t) − u(t) + Bwa(t), (5)

together with a discrete-time measurement equation from (4) of
the form

yk = Hx(tk) + nk, (6)

where

x ∆
=


r̃
ṽ


, yk = rm(tk) − r̂(tk), A =


03 I3
03 03


,

Ã(t) =


−ω×

x (t) 03
∂ag(t) −ω×

x (t)


, ∂ag(t)

∆
= ∂ag(r̂(t), t)/∂r,

B =

03 I3

T
, u =


uT
r uT

v

T
, H =


I3 03


.

From this point on, for a time-dependent vector or matrix X(t),
we will denote X(tk) = Xk. It is assumed that the sample period
T = tk+1 − tk is short enough such that the linearized error
dynamics in (5) can be discretized as

xk+1 = e(A+Ãk)Txk −

 tk+1

tk
e(A+Ãk)(tk+1−τ)u(τ )dτ + wk, (7)

where wk is a zero-mean white noise sequence with covariance

Qk =

 tk+1

tk
e(A+Ãk)(tk+1−τ)BQ̄τBT e(A+Ãk)

T (tk+1−τ)dτ . (8)

In typical problems involving spacecraft, Ãk is small comparedwith
A, and it may be viewed as a perturbation to A. One readily finds
that

eAt =


I3 tI3
03 I3


. (9)

Using (9), if Q̄t = q(t)I3 (i.e. isotropic) where q(t) ≥ 0, then in
the unperturbed case (i.e. Ãk = 0) the discrete process noise in (8)
takes the form

Qk =

 tk+1

tk


(tk+1 − τ)2I3 (tk+1 − τ)I3
(tk+1 − τ)I3 I3


q(τ )dτ . (10)

Considering the matrix exponential expansion for exp[(A + Ãk)t],
and keeping only first order terms in Ãk gives

e(A+Ã(tk))t ≈ eAt +

∂ag,kt2

2
∂ag,kt3

6

∂ag,kt
∂ag,kt2

2

−


ω×

x,kt ω×

x,kt
2

03 ω×

x,kt


. (11)

The control term in (7) will now be examined. Since the
measurements in (6) are available only at the sample times, the
control-like input in Eqs. (3) and (5) is implemented through a
zero-order hold

u(t) = ūk, tk ≤ t < tk+1, (12)

for some yet to be chosen ūk. Temporarily neglecting the perturb-
ing terms in (11), one obtains tk+1

tk
eA(tk+1−τ)u(τ )dτ =


T I3 (T 2/2)I3
03 T I3


ūk =: ŭk. (13)

Using Eqs. (9) and (13), the ideal discrete system corresponding to
(7) becomes

xk+1 = 8xk − ŭk + wk, (14)

where8
∆
= exp[AT ], and ŭk is a discrete control-like input, which

is yet to be defined. Eq. (13) is readily inverted to obtain

ūk =


(1/T )I3 −(1/2)I3

03 (1/T )I3


ŭk, (15)
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