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a b s t r a c t

The problem of finding conditions for the reconstruction of a linear combination of the vector of unknown
inputs is tackled. Appropriate definitions are given in order to address formally the analysis. Thus,
necessary and sufficient conditions are obtained for two cases, when the reconstruction may be achieved
in finite time andwhen it is possible to do it asymptotically. The results are applied for the fault detection,
with the respective deduction of analogous conditions.
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1. Introduction

The fault detection problem of dynamic systems has been
largely studied in the last decades. One of the most known
approaches used to tackle this problem has been that of using
residuals, which main idea is to compare the value of the actual
system output with an expected value of the output for which it is
assumed that the system is free from faults. For such an approach
two seminalworks for linear andnonlinear systems are found inDe
Persis and Isidori (2001) and Massoumnia, Verghese, and Willsky
(1989), respectively. In those papers, conditions are given under
which the fault detection can be achieved. Other approach con-
sists in using unknown input observers, which allows for the es-
timation of the faults also, see for instance Hammouri and Tmarc
(2010), Hou and Patton (1998), Hui and Zak (2005) and Xiong and
Saif (2003). In Bejarano (2011) and Bejarano, Figueroa, Pacheco,
and Rubio (2012) one can find a procedure to reconstruct the fault
signals of linear systems that may be affected by disturbances also.
There, the fault reconstruction is carried out directly without the
need of any observer. For the case of descriptor systems the fault
detection problem has been studied in less proportion. In Gaoa and
Ding (2007), the fault actuator estimation is tackled for a sort of
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nonlinear systems. For linear systems, in Duan, Howe, and Patton
(2002), Hamdi, Rodrigues,Mechmeche, Theilliol, and Braiek (2012)
andKoenig (2005) the fault detection is carried out bymeans of un-
known input observers. The purpose of this work is to find condi-
tions allowing for the reconstruction of the faults considering that
the system is affected by disturbances (uncertainties or exogenous
perturbations) also. Thus, we assume that faults may appear in the
following descriptor system

Eẋ (t) = Ax (t) + B1f (t) + B2d (t)
y (t) = Cx (t) + D1f (t) + D2d (t)

(1)

there, f (t) is the vector of faults and d (t) is the vector of distur-
bances affecting the system, the matrix E is not invertible (and
not necessarily a square matrix). The procedure used to analyze
the conditions for the fault reconstruction is as follows. We notice
that f and d can be put together in a single vector, let us say ϕ (t).
Then f (t) is equal to Lϕ (t) for somematrix L. Hence, in the way to
give answer to the main question of this work, necessary and suf-
ficient conditions are obtained for that Lϕ (t) be reconstructible in
finite time and for that Lϕ (t) be reconstructible asymptotically.

The structure of the paper is as follows. In Section 2 definitions
of finite time and asymptotic reconstructibility are formulated.
The main results regarding the reconstructibility concepts are
presented in Section 3. The general results are applied to the
fault reconstruction problem in Section 4, which is separated
into three subsections. The steps to be followed for checking the
reconstructibility of the faults are given in 4.1. Explicit procedures
to reconstruct the faults are given in 4.2, for the case when the
fault reconstruction is possible in finite time, and in 4.3, for the

http://dx.doi.org/10.1016/j.automatica.2015.04.023
0005-1098/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2015.04.023
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2015.04.023&domain=pdf
mailto:javbejarano@yahoo.com.mx
http://dx.doi.org/10.1016/j.automatica.2015.04.023


146 F.J. Bejarano / Automatica 57 (2015) 145–151

case when the reconstruction can be achieved asymptotically.
Throughout the paper, we will use R, C, and C− to denote the
real field, the complex field, and the set of complex numbers with
negative real part, respectively.

2. Reconstructibility definitions

Let us consider the sort of systems governed by the following
equations

Eẋ (t) = Ax (t) + Bϕ (t) (2a)
y (t) = Cx (t) + Dϕ (t) (2b)
z (t) = Lϕ (t) (2c)

where x (t) ∈ Rn is the state vector, y (t) ∈ Rp is the systemoutput,
ϕ (t) ∈ Rm is a vector of unknown inputs, which are assumed
to be piece-wise continuous. The vector z (t) ∈ Rm̄ represents a
linear functional of ϕ (t). All matrices are assumed to be constant,
E ∈ Rn1×n, A ∈ Rn1×n, B ∈ Rn1×m, C ∈ Rp×n, D ∈ Rp×m, L ∈ Rm̄×m.
In particular the matrix E is assumed to have rank less than n.
Without loss of generality, it is assumed that rankL = m̄.

It is assumed that Ex

0−

and ϕ (t) are such that a solution

of the state equation (2a) exists (x

0−


:= limt→0− x (t)) (see,
e.g. Hou & Müller, 1999). In fact such a solution, in general, is not
unique.1 Nevertheless, it is assumed that every solution of x (t) is
piecewise differentiable.

The aim is to find conditions under which the reconstruction of
z (t) can be carried out using the knowledge of the system output.
One possibility is to do the reconstruction of z (t) in finite time, and
other possibility is to do it asymptotically. Hence, to deal with the
problem under study, the following definitions are given.

Definition 1. z (t) of system (2) is finite time reconstructible (FTR)
if the identity y (t) = 0 for all t ≥ 0 implies z (t) = 0 for all t ≥ 0.

Definition 2. z (t) of system (2) is asymptotically reconstructible
(AR) if the identity y (t) = 0 for all t ≥ 0 implies z (t) → 0 as
t → ∞.

Let L̄ be a matrix so that L̄ ∈ Rm×(m−m̄), rankL̄ = m − m̄, and
LL̄ = 0. Matrices L and L̄ are concatenated (in case m̄ < m) to form
the nonsingular matrix (and its inverse)

Ψ =


L
L̄+


, Ψ −1

=

L+ L̄


where L+

= LT

LLT
−1

and L̄+
=

L̄T L̄
−1

L̄T .

Thus, we see that ϕ (t) = L+z (t) + L̄z̄ (t), where z̄ (t) = L̄+ϕ (t).
In the case that m̄ = m then, by definition, Ψ = L and L̄ = 0. Now,
let V ∗ be the largest subspace that satisfies the following inclusion
(see, e.g. Geerts, 1993)

A
C


V ⊂ (EV × 0) + im


B
D


. (3)

Likewise V̄ ∗ is the largest subspace satisfying the inclusion
A
C


V̄ ⊂


EV̄ × 0


+ im


BL̄
DL̄


. (4)

By comparing (3) and (4), it is clearly seen that

V̄ ∗
⊂ V ∗. (5)

1 For the case when n1 = n, a condition guaranteeing a unique solution of (2a)
is that there exists s0 ∈ C such that det (s0E − A) ≠ 0. Such a condition is not
assumed in this manuscript.

3. Functional unknown input reconstructibility

Let us choose a full column rank matrix V so that imV = V ∗.
Let M∗ be selected as a full row rank matrix so that M∗V = 0
(i.e. kerM∗ = V ∗). Likewise V̄ and M̄∗ are calculated, except that
V̄ ∗ has to be used instead of V ∗. An easy algorithm to calculateM∗

and V is given in Appendix A. In view of (5), V can be selected so
that V =


Ṽ V̄


. By (3), there exists a pair of matrices (F ,Q ) such

that

AV + BF = EVQ
CV + DF = 0

(6)

and by (4) there exists a pair of matrices

F̄ , Q̄


such that

AV̄ + BL̄F̄ = EV̄ Q̄

CV̄ + DL̄F̄ = 0.
(7)

Thus, since V =

Ṽ V̄


, F can be chosen to have the form F =

F̃ L̄F̄

, for some matrix F̃ . As for Q , we have that it has the

form Q =


Q1 0
Q2 Q̄


. Now, let us define M+

∗
= MT

∗


M∗MT

∗

−1

and V+
=

V TV

−1 V T . Then, the following change of coordinates
is defined, w1 , M∗x and w2 , V+x. Defining the vector w as w =
wT

1 wT
2

T , we obtain, in case V ∗
≠ V̄ ∗,

EM+

∗
ẇ1 + EV ẇ2 = AeM+

∗
w1 + EVQw2 + B (ϕ − Fw2) (8a)

y = CeM+

∗
w1 + D (ϕ − Fw2) (8b)

where Ae , A + BFV+ and Ce , C + DFV+. Indeed, (8) is easily
obtained by taking into account (6) and the fact that V+V = I . In
case V ∗

= V̄ ∗, we obtain

EM+

∗
ẇ1 + EV ẇ2 = AeM+

∗
w1 + EVQw2 + B


ϕ − L̄F̄w2


(9a)

y = CeM+

∗
w1 + D


ϕ − L̄F̄w2


(9b)

there, Ae , A + BL̄F̄V+ and Ce , C + DL̄F̄V+.

Lemma 1. The identity y (t) = 0 for all t ≥ 0 implies that w1 (t) =

M∗x (t) = 0 for all t ≥ 0.

A proof of Lemma 1 is given in Appendix B. LetH∗ be a full row rank
matrix so that kerH∗ = EV ∗. (H∗ may be calculated by using the
algorithm given in Appendix A).

Theorem 1. z (t) is FTR if, and only if,

(1) EV ∗
∩ B kerD = EV ∗

∩ BL̄ kerDL̄,

BL+

DL+


is injective, and V̄ ∗

=

V ∗, or equivalently,

(2) rank

H∗B
D


= m̄ + rank


H∗BL̄
DL̄


and rankV = rankV̄ .

Proof. (If ) If y (t) = 0, then, by Lemma1,w1 = 0. Thus, taking into
account that rankV = rankV̄ implies V ∗

= V̄ ∗, and since LL̄ = 0,
we obtain by (9) the identity
EV̄ ẇ2

0


=


EV̄Qw2

0


+


B
D


Ψ −1


z

z̄ − F̄w2


.

Furthermore, since kerH∗ = EV ∗
= EV̄ ∗, then

0 =


H∗B
D


Ψ −1


z

z̄ − F̄w2


.

Therefrom, the first condition in the clause 2 of the theorem implies
that z (t) = 0.
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