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Many mechanical systems are nonlinear and often high-dimensional. Constructing accu-
rate models for continuous-time nonlinear systems calls for effectively identifying their
parameters, whereas measurement noise and sensitivity to initial conditions make the
identification challenging. This paper proposes a new parameter identification method
for ordinary differential equations based on the idea of B-Spline Galerkin finite element.
In this approach, the system’s solution is globally constructed by a set of B-Splines. With
Galerkin weak formulation, instead of taking analytical derivatives on basis functions,
the differential terms are eliminated through integration by parts so that the measurement
noise will not be amplified. Then least square algorithms can be adopted for solving the
optimization problem to estimate the parameters. By solving two intractable testbed
problems, the coupled Chua’s circuits and the Tank reactor equations, we show that the
new approach is effective and efficient in dealing with systems with high-
dimensionality, complex nonlinearity, discontinuous input and output, and noisy data
without specific pre-processing. In addition, this method is employed to identify the geo-
metrical and mechanical parameters of a Miura-origami structure under base excitation,
which possesses complex global nonlinearity, exhibits chaotic responses, and suffers from
significant measurement noise. The proposed method gains success in dealing with this
system; based on the identified parameters, the corresponding constituent force-
displacement relation and the simulation results agree well with the experiments.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Ordinary differential equations (ODEs) arise in many contexts of natural and social science for describing the temporal
evolution of anything from a rocket launching to the spread of a disease, from electrical circuits to economic development
[1]. Under some circumstances, the models are based on well-established physical principles, the parameters of ODEs can be
determined from first principles or direct measurement. On the other hand, many ODEs are mathematical simplifications of
actual systems or even data-driven models [2], their parameters cannot be determined through either of these approaches,
which as a result, calls for parameter identification from experimentally measured data.
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The nonlinear least square (NLS) method is a straightforward approach for parameter estimation in ODEs [3,4]. Usually,
closed-form solutions do not exist for a generic nonlinear ODE model. Hence, numerical integration scheme such as the
Runge-Kutta algorithm is often used to obtain approximate solutions of the ODEs for a given set of parameters and initial
conditions; then an iterative procedure is applied to find the optimal estimation of the unknown parameters that minimize
the residual sum of squares of the differences between the experimental data and the numerical solutions [5]. Note that the
system’s initial conditions are always difficult to know accurately or are with noise. To solve this issue, one solution is to
treat the initial conditions as an additional set of unknown parameters in the minimization scheme [6,7]. However, the
NLS method calls for numerical integration during each iteration, which therefore induces problems including high compu-
tational costs and slow convergence, especially for those systems in high dimension and with complex nonlinearities.

An alternative to iterative numerical integration is to build a regression model using measured discrete-time data and
their higher-order derivatives in a “direct approach” [8-10]. Here the derivatives can be approximated through various
discrete-time algebraic operators, such as bilinear transform, forward/backward/central difference, or generalized finite dif-
ference operators [9-11]. Then the least squares method would be desirable to apply because of its good numerical proper-
ties and low computational burden, especially for fast or non-uniform sampling. Particularly, recent research has
demonstrated the advantages of difference operators (i.e., the delta ‘5’ operator) because the identified model based on
discrete-time representation has structural similarity to the continuous-time ODE-model, and the identified parameters
approach to their continuous-time counterparts as the sampling interval tends to zero [10,12,13]. These estimation methods
have been applied in both linear and nonlinear continuous-time system identification [10,12-15]. Note that in order to
derive high-order derivative, repeated numerical differences on data are unavoidable in these approaches, which may cause
noise amplification and a biased least squares estimate. To overcome this deficiency, various denoising algorithms [16-18]
and bias-removal methods [12,14] have been proposed. However, for those systems that are extremely sensitive to param-
eters, such as chaotic systems [10,19], the denoising and bias-removal approaches would not be effective. To identify and
correct the errors and biases, the system’s underlying dynamic behavior needs to be exploited, which on the other hand,
is always cumbersome and case-dependent.

Another way to avoid iterative numerical integration is to represent the solution globally via a set of convenient basis
functions. Then the numerical difference used in the abovementioned discretization-based methods can be replaced by ana-
lytical derivatives of the basis functions. The choice of basis is crucially important for taking derivatives, because a very accu-
rate representation of the data may exhibit high-frequency small-amplitude oscillations that are catastrophic for derivative
estimation. Generally, Fourier basis [20,21] is always adopted for periodic data, and B-spline basis [22,23] or wavelets basis
[24,25] for open-ended data. In addition to the type of basis, deciding the number of bases is also a dilemma: the more basis
functions, the better fit to the data, but with the risk of simultaneously fitting the undesired noise and amplifying the noise
when taking derivatives; while with fewer basis functions, important smooth characteristics that we are trying to achieve
may be missed [26]. Certain techniques have been proposed to tackle this dilemma, such as stepwise variable selection
and variable-pruning methods [27] for adding or dropping basis functions, iteratively correcting and fitting the measure-
ment [22], and roughness penalty for avoiding over-fitting [26]. For example, with the roughness penalty approach, although
the number of basis functions is equal or greater than that of the knots, penalties will be applied to the roughness so that the
fitted curve would emphasize more on the smooth characteristics of the data. However, a new problem arises that how much
degree of roughness penalty should be applied; determining of which can be achieved through, e.g., the generalized cross-
validation method [28], but is always computationally intensive.

Note that none of the parameter identification methods would be effective in all scenarios. In practice, some essential
issues need to be taken into account when proposing a new method. First, the method has to be computationally efficient
that each trial can be completed in a short time. Second, the method should be robust under noise, since a noisy measure-
ment is always unavoidable. Third, the method is expected to be able to deal with complex nonlinearity and high dimension-
ality. In this paper, inspired by the B-Spline Galerkin finite element method [29,30], a new identification approach is
developed. More specifically, in this method, although still relying on basis functions (B-Spline) to globally represent the
solution, derivatives on basis functions are replaced by analytical integration-by-parts based on the Galerkin weak formu-
lation. Hence, this method not only removes the need for time-consuming numerical integrations but also avoids numerical
differences on discrete data or derivatives on basis functions that may induce undesired noise amplification. Note that sim-
ilar ideas based on conventional Galerkin finite element method [31] have been proposed in [32], where piecewise-liner
basis functions were adopted for constructing the solutions of linear systems (truss structures). In this research, via solving
two numerical testbed problems and dealing with a practical Miura-origami (Miura-ori) dynamic problem, we show that the
new method extends its applicability to high-dimensional systems with complex nonlinearity, and is both efficient and
robust. Therefore, the method developed in this paper significantly advances the state of the art in terms of broad applica-
bility, computationally efficiency, and robustness.

The rest of the paper is organized as follows. Section 2 introduces the system we are to identify and three problems that
will be tackled by the new method, including two numerical testbed problems and a Miura-ori structure with strong non-
linearity. This is followed by detailed descriptions of the proposed method and the optimization procedures for linear and
nonlinear systems in Section 3. The effectiveness of the method is verified in Section 4 on the two testbed problems. In
Section 5, the method is applied to identify the geometric and physical parameters of a Miura-ori structure under dynamic
excitations. Finally, summary and heuristic discussions are presented in Section 6.



Download English Version:

https://daneshyari.com/en/article/6954198

Download Persian Version:

https://daneshyari.com/article/6954198

Daneshyari.com


https://daneshyari.com/en/article/6954198
https://daneshyari.com/article/6954198
https://daneshyari.com

