
A new method for computation of eigenvector derivatives with
distinct and repeated eigenvalues in structural dynamic
analysis

Zhengguang Li a, Siu-Kai Lai b,c,⇑, Baisheng Wud

a State Key Laboratory of Automotive Simulation and Control, School of Mathematics, Jilin University, Changchun 130012, People’s Republic of China
bDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People’s Republic of China
c The Hong Kong Polytechnic University Shenzhen Research Institute, Nanshan, Shenzhen, People’s Republic of China
d School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People’s Republic of China

a r t i c l e i n f o

Article history:
Received 2 September 2017
Received in revised form 13 December 2017
Accepted 4 January 2018

Keywords:
Real symmetric eigensystems
Distinct and repeated eigenvalues
Eigenvector derivatives
Singularity
Finite element model

a b s t r a c t

Determining eigenvector derivatives is a challenging task due to the singularity of the coef-
ficient matrices of the governing equations, especially for those structural dynamic sys-
tems with repeated eigenvalues. An effective strategy is proposed to construct a non-
singular coefficient matrix, which can be directly used to obtain the eigenvector derivatives
with distinct and repeated eigenvalues. This approach also has an advantage that only
requires eigenvalues and eigenvectors of interest, without solving the particular solutions
of eigenvector derivatives. The Symmetric Quasi-Minimal Residual (SQMR) method is then
adopted to solve the governing equations, only the existing factored (shifted) stiffness
matrix from an iterative eigensolution such as the subspace iteration method or the
Lanczos algorithm is utilized. The present method can deal with both cases of simple
and repeated eigenvalues in a unified manner. Three numerical examples are given to illus-
trate the accuracy and validity of the proposed algorithm. Highly accurate approximations
to the eigenvector derivatives are obtained within a few iteration steps, making a signifi-
cant reduction of the computational effort. This method can be incorporated into a coupled
eigensolver/derivative software module. In particular, it is applicable for finite element
models with large sparse matrices.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The computation of eigenvalue and eigenvector derivatives with respect to changes in structural design parameters is of
wide practical importance in many fields, including structural dynamic optimization, system updating, damage detection,
modification and identification [1–4]. However, determining eigenvector derivatives is still a challenging task due to the sin-
gularity of the coefficient matrices of the governing equations, especially for those structural dynamic systems with repeated
eigenvalues.

To date, many methods have been developed for computing derivatives of eigenvalues and eigenvectors. The modal
method was firstly derived by Fox and Kapoor [5] for the symmetric generalized eigenvalue problems. This technique
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requires the presence of knowledge for all eigenvectors, it is thus difficult for implementation and time-consuming for the
analysis of large-scale structures. Based on the framework of this approach, Wang [6] improved the modal truncation
method by using a residual static mode to approximate the contribution due to unavailable high-frequency modes. By means
of the truncated modes to the eigenvector derivatives [7], the accuracy of computing the derivatives of eigenvalues and
eigenvectors can be further improved. Afterwards, this approach was extended to investigate the symmetric and asymmetric
systems with damping [8–10].

In an early effort, Nelson [11] proposed an efficient method to calculate the first-order derivatives of eigenvectors with
distinct eigenvalues for the general real systems, by expressing the eigenvector derivatives as a particular solution and a
homogeneous solution. In contrast to the modal method, the Nelson’s method only requires considering both eigenvalues
and eigenvectors. Friswell [12] extended the Nelson’s method to find the second-order and higher-order derivatives of
undamped systems. Besides, Friswell and Adhikari [13] further generalized the Nelson’s method to calculate the eigenvector
derivatives of symmetric and asymmetric systems. Guedria et al. [14] also applied the Nelson’s method to compute the
second-order derivatives of viscously damped systems.

Algebraic methods are another common approach that can be used to conduct the sensitivity analysis of mode shapes.
Based on the rationale of this technique, a set of algebraic equations can be formulated using the derivatives of eigenvalue
problems and the additional constraints can be determined from the derivatives of normalization. In the past, Lee and Jung
[15] developed an algebraic method for the real symmetric eigenvalue problem with distinct eigenvalues. They [16] further
extended the algebraic method to compute the eigenpair derivatives of symmetric systems with viscous damping. Besides,
the algebraic approach was generalized for the eigensensitivities of asymmetric viscously damped systems [17–20].
Recently, Li et al. [21] extended this type of method to calculate the first-order and second-order eigenvector derivatives
of undamped and damped nonlinear systems.

Furthermore, iterative methods are often used for the sensitivity analysis of eigensystems. Rudisill and Chu [22] pre-
sented an iteration method to find the first partial derivatives of eigenvalues and eigenvectors of self-adjoint systems.
Andrew [23] offered a rigorous proof for the convergence of an iterative algorithm under the conditions mentioned in
[22], and some refinements were also proposed in [24,25]. Based on the Subspace Iteration, Lanczos, Davidson and Arnoldi
methods, the corresponding iterative algorithms for the analysis of eigensensitivities were established, respectively [26–30].
In addition, Alvin [31] introduced a preconditioned conjugate projected gradient (PCPG)-based technique for the analysis of
eigenvalue problems. Xie [32] proposed a method that can be used to simultaneously compute the derivatives of several sim-
ple eigenvalues and the corresponding eigenvectors of unsymmetric damped systems. In the literature, some review studies
[33,34] were also presented for the computation of derivatives of the general eigensystems with distinct eigenvalues.

It is worth noting that much research efforts [5–32] are only applicable to the case of distinct eigenvalue systems. How-
ever, there are many repeated or nearly equal eigenvalues in typical structural problems caused by two or more planes of the
reflective or cyclic structural symmetry, e.g., wheelsets on trains. Besides, the repeated eigenvalues are far more likely to
occur in optimized structures. The calculation of the derivatives of eigenvectors with repeated eigenvalues is more difficult,
because the rank of the coefficient matrices of the governing equations is lower than those of the simple eigenvalues.

Generally, there are two key issues in the computation of eigenvector derivatives for simple and repeated eigenvalues by
means of the improved Nelson’s method. The first problem is how to find the particular solutions to the governing equations
with a singular coefficient matrix, and the second one is how to determine the eigenvector derivatives for the given partic-
ular solutions. The previously proposed methods are mainly dependent on deleting rows and columns of the singular
dynamic stiffness matrix [35–37] or using the bordered matrix method [38–40] to form a non-singular coefficient matrix,
which requires re-ordering the matrix and destroying its sparsity. For example, Ojalvo [35] generated insufficient equations
to determine the eigenvector derivatives form the particular solutions. Mills-Curran [36] and Dailey [37] considered the
information from the second-order derivatives of eigenvalue problems to calculate the eigenvector derivatives of undamped
systems with repeated eigenvalues. The case in which some of the first-order derivatives of repeated eigenvalues are not
distinct was also considered [39,41,42]. Tang et al. [43,44] presented a method for the sensitivity analysis of repeated eigen-
values of general quadratic eigenvalue problems. Moreover, Xu and Wu [45] constructed a new normalization condition and
developed an efficient method to compute the first-order derivatives of eigenvectors of symmetric viscously damped sys-
tems with distinct and repeated eigenvalues. More recently, Li et al. [46] proposed a new normalization for the left eigen-
vectors. Indeed, the left and right eigenvector derivatives can be computed in a parallel way for the asymmetric damped
systems with distinct and repeated eigenvalues. They [47] also presented a combined normalization method to calculate
the eigenvector derivatives of viscously damped systems with distinct and multiple eigenvalues.

On the other hand, Lee et al. [48] developed an algebraic method to consider the derivatives of eigensolutions of
undamped eigensystems with multiple eigenvalues. Furthermore, Lee et al. [49] and Choi et al. [50] extended their algebraic
method to the higher-order eigensensitivity of symmetric damped systems with repeated eigenvalues. Nevertheless, Wu
et al. [40] pointed out that there exists a mistake in the derivation of the normalization of the systems with repeated eigen-
values [48].

Making use of a simultaneous iteration algorithm, Andrew and Tan [51,52] considered the eigenpair derivatives of
repeated eigenvalues and its corresponding eigenvectors. Qian [53] proposed a numerical method to compute the first-
order and higher-order derivatives of multiple eigenpairs of quadratic eigenvalue problems. Application of these methods
to many models, however, is occasionally confronted to convergence problems. Recently, Wu et al. [54] presented a precon-
ditioned conjugate gradient (PCG)-based iteration method to calculate the eigenvector derivatives of real symmetric eigen-
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