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a b s t r a c t

Most of the recent results on the leader-following rendezvous problem focus only on the deterministic
multi-agent systemswithout external disturbances and plant uncertainties. In this paper, wewill present
a novel distributed internalmodel approach to further study the leader-following rendezvous problem for
double-integrator multi-agent systems subject to both external disturbances and plant uncertainties. We
provide both the distributed full state feedback control and the distributed partial state feedback control
without velocity measurement. In both control schemes, we will give the suitable distributed internal
model to convert the rendezvous problem into the stabilization problemwith connectivity preserving for
their augmented systems. We stabilize the corresponding augmented systems by the high gain feedback
control based on a new potential function. Comparing with some recent results, our design can handle a
large class of reference signals, external disturbances, and plant uncertainties.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decade, the cooperative control of multi-agent
systems has attracted extensive attention of the control commu-
nity. Among all the cooperative control problems, the rendezvous
problem is one of themost important topics. In contrast to the con-
sensus problem, in which the connectivity of the network topolo-
gies at any time instant are usually defined in advance, see Hu and
Hong (2007), Jadbabaie, Lin, and Morse (2003), Olfati-Saber and
Murray (2004) and Ren and Beard (2008), the rendezvous prob-
lem requires the controller able to maintain the connectivity of
the network topologies. Such a network is usually described by
a time-varying graph, in which the given edge between any two
agents is acted if and only if the distance between these two agents
is less than some positive real number that is called the sensing
range. It is nowwell known that the connectivity can be preserved
via some suitable potential function based approach (Ji & Egerst-
edt, 2007). For different objectives, the rendezvous problem can
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be divided into two classes: leaderless and leader-following.While
the leaderless rendezvous problem aims to make the positions
of all agents approach a same but usually unknown location, the
leader-following rendezvous problem further requires the posi-
tions of all agents asymptotically track a special trajectory which is
called the leader system. So far, the leaderless rendezvous problem
has beenwidely studied for single-integratormulti-agent systems,
see Dimarogonas, Loizou, Kyriakopoulos, and Zavlanos (2006), Ji
and Egerstedt (2007), Yang et al. (2010), and Zavlanos and Pappas
(2007) and double-integrator multi-agent systems, see Su, Wang,
and Chen (2010). The leader-following rendezvous problem has
also received a lot of attentions for single-integrator multi-agent
systems, see Gustavi, Dimarogonas, Egerstedt, and Hu (2010) and
Ji, Ferrari-Trecate, and Buffa (2008) and double-integrator multi-
agent systems, see Dong and Huang (2013) and Su et al. (2010).

Most of these recent results focus only on the deterministic
multi-agent systems without external disturbances and plant
uncertainties. Particularly, paper (Su et al., 2010) first studied the
leader-following rendezvous problem for double-integratormulti-
agent systems with the leader system being also the double-
integrator. More recently, paper (Dong & Huang, 2013) further
considered the problem for the same class of double-integrator
multi-agent systems as that in Su et al. (2010) but with a more
general class of the leader system and subject to a class of
external disturbances. Both the reference tracking signal and
the external disturbance are assumed to be generated by an
autonomous linear system that is called the exosystem or the
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leader system. As a result, this class of disturbances can be arbitrary
without assuming to be bounded. Paper (Dong & Huang, 2013)
provided a feedforward designmethodwith a distributed observer
approach to reject the disturbances. The design method, however,
explicitly relies on the solution of the regulator equations (Francis
& Wonham, 1976). Thus, it is not applicable to the system with
plant uncertainties.

In this paper, wewill present a novel distributed internalmodel
approach to study the leader-following rendezvous problem for
double-integrator multi-agent systems subject to both external
disturbances and plant uncertainties. We will consider both the
distributed full state feedback control and the distributed partial
state feedback control without velocity measurement. In both
control schemes, we will give the suitable distributed internal
model to form the corresponding augmented system. For the full
state feedback case, the augmented system is composed of the
multi-agent system and the internal model, while for the partial
state feedback control case, the augmented system is composed
of the multi-agent system, the internal model and an input
driven filter. By the output regulation theory (Huang, 2004), the
rendezvous problem is converted to the stabilization problemwith
connectivity preserving for these augmented systems. We then
successfully stabilize the corresponding augmented systems by the
high gain feedback control based on a new potential function. The
major novelty, comparing with the recent results (Dong & Huang,
2013; Su et al., 2010), lies in that our design can handle a large class
of reference signals, external disturbances, and plant uncertainties,
simultaneously. A detailed comparison will be shown in Remark 1.

It is worthmentioning that the internal model based control for
multi-agent systems with fixed and switching network topologies
are recently presented in Hong, Wang, and Jiang (2013), Su, Hong,
and Huang (2013), Wang and Han (2011), Wieland, Sepulchre, and
Allgöwer (2011) and Yu andWang (2013). Such a problem is called
the cooperative output regulation problem, and can be viewed
as a generalization of the leader-following consensus problem.
However, the controllers in Hong et al. (2013), Su et al. (2013),
Wang and Han (2011), Wieland et al. (2011) and Yu and Wang
(2013) are all linear, and hence are not able to maintain the
connectivity. In contrast, we have to resort the potential function
based nonlinear control law in this paper.

The rest of this paper is organized as follows. In Section 2,
we give our problem formulation as well as some preliminary
results. In Sections 3 and 4, we study the solvability of our problem
via the distributed full state feedback control and the distributed
partial state feedback control without velocity measurement,
respectively. We provide an example in Section 5. Finally, in
Section 6, we finish the paper with conclusions.

Notation: Given the column vectors ai, i = 1, . . . , s, we denote
col(a1, . . . , as) = [aT1, . . . , a

T
s ]

T . Given two matrices A and B, the
symbol A ⊗ B represents the Kronecker product of A and B. Given
a finite set S, the symbol |S| denotes the cardinality of S. Given
a symmetric matrix A, λmin(A) and λmax(A) denote the minimum
andmaximumeigenvalues ofA, respectively. Given two symmetric
matrices A and B, the symbol A ≥ B means the matrix A − B is
positive semi-definite.

2. Problem formulation and preliminaries

Consider the class of double-integrator multi-agent systems

q̇i = pi + d1i,
ṗi = ui + d2i, i = 1, . . . ,N, (1)

where qi ∈ Rn denotes the position of the ith agent, pi ∈ Rn

denotes the velocity of the ith agent, and d1i ∈ Rn and d2i ∈ Rn

represent the external disturbances in the plant. Let q0(t) ∈ Rn

be the reference trajectory. Both the trajectory signal of the leader

q0(t) and the disturbance signals d1i(t) and d2i(t) are assumed to
be generated by the linear exosystem

v̇ = Sv, (2)

with q0 = F(w)v, d1i = E1i(w)v, d2i = E2i(w)v, where v ∈ Rnv ,
S ∈ Rnv×nv , E1i(w), E2i(w), F(w) ∈ Rn×nv , and w ∈ Rnw is
an uncertain parameter vector. The exosystem (2) can generate
a large class of practical reference signals such as step functions,
ramp functions, polynomial functions, exponential functions, and
sinusoid functions, as well as their products and combinations.
It is common studied in the output regulation theory, see Huang
(2004).

The plant (1) and the exosystem (2) together are viewed as a
multi-agent system of N + 1 agents with the exosystem as the
leader and all the subsystemsof (1) as the followers.Motivated by Ji
and Egerstedt (2007), with respect to (1) and (2), we can define a
time-varying graph Ḡ(t) = {V̄, Ē(t)}, where V̄ = {0, 1, . . . ,N}

with the node 0 associated with the exosystem and the other N
nodes associated with the N followers, respectively, and Ē(t) ⊆

V̄ × V̄ by the following rules: given any r > 0, for any t ≥ 0,
Ē(t) = {(i, j) : i, j ∈ V̄} is defined such that

1. for any i ≠ j, i = 0, 1, . . . ,N , j = 1, . . . ,N , (i, j) ∈ Ē(t) if and
only if ∥qi(t)− qj(t)∥ < r;

2. (i, 0) ∉ Ē(t) and (i, i) ∉ Ē(t) for any t ≥ 0 and any i =

0, 1, . . . ,N .

We define the neighbor set of the ith agent at time t as N̄i(t) =

{j : (j, i) ∈ Ē(t)}. Then we will consider a distributed dynamic full
state feedback control law of the form

ui = k1i(ζi, pi, qi − qj, j ∈ N̄i(t) ∩ N̄i(0)),

ζ̇i = h1i(ζi, pi, qi − qj, j ∈ N̄i(t) ∩ N̄i(0)), i = 1, . . . ,N, (3)

where k1i and h1i are some nonlinear functions vanishing at the
origin, and ζi ∈ Rnζi with nζi to be defined later, and a distributed
dynamic partial state feedback control law of the form

ui = k2i(ζi, qi − qj, j ∈ N̄i(t) ∩ N̄i(0)),

ζ̇i = h2i(ζi, qi − qj, j ∈ N̄i(t) ∩ N̄i(0)), i = 1, . . . ,N, (4)

where k2i and h2i are some nonlinear functions vanishing at the
origin, and ζi ∈ Rnζi with nζi to be defined later. Both controllers
(3) and (4) are distributed because the control input of the ith
agent can only access the information of itself and its neighbors.
In particular, in this paper, we assume that only those agents
whose neighbors contain the leader can access the trajectory of the
leader,while the velocity of the leader is unknown for any follower.
Now we define the leader-following rendezvous and disturbance
rejection problem for system (1) as follows.

Problem 1. Given the multi-agent system composed of (1) and
(2), and any r > 0, find a distributed control law of the form (3)
or (4) such that, for all w ∈ Rnw and all initial states that make
the initial graph Ḡ(0) connected in the sense that every node i,
i = 1, . . . ,N is reachable from the node 0, the closed-loop system
has the following two properties: (i) Ḡ(t) is connected for all t ≥ 0;
(ii) limt→∞(qi(t)− q0(t)) = 0, i = 1, . . . ,N .

Remark 1. It is worth relating our problem formulation to those
of two recent papers (Dong & Huang, 2013; Su et al., 2010), which
also consider the leader-following rendezvous problem of double
integrator multi-agent systems. Here our problem is much more
challenging than those in Dong and Huang (2013) and Su et al.
(2010) at least from the following aspects.
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