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a b s t r a c t

This paper is concernedwith stability of linear discrete time-delay systems. Note that a tighter estimation
on a finite-sum term appearing in the forward difference of some Lyapunov functional leads to a less
conservative delay-dependent stability criterion. By using Abel lemma, a novel finite-sum inequality is
established, which can provide a tighter estimation than the ones in the literature for the finite-sum term.
Applying this Abel lemma-based finite-sum inequality, a stability criterion for linear discrete time-delay
systems is derived. It is shown through numerical examples that the stability criterion can provide a larger
admissible maximum upper bound than stability criteria using a Jensen-type inequality approach and a
free-weighting matrix approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the linear discrete time-delay system described by
x(k + 1) = Ax(k) + Adx(k − d)

x(θ) = φ(θ), θ = −d, −d + 1, . . . , 0 (1)

where x(k) ∈ Rn is the system state; A and Ad are n × n known
real matrices; φ(θ) is an initial condition; and the time delay d is a
positive integer.

The system (1) is of strong engineering background because a
number of practical control systems are implemented through a
communication network (Peng, Tian, & Yue, 2011; Xiong & Lam,
2009). As a consequence, during the last decade, study on stability
of the system (1) has gained growing attention, and one can refer
toGao andChen (2007), He,Wu, Liu, and She (2008), Jiang, Han, and
Yu (2005), Xu, Lam, and Zhou (2005), Zhang, Xu, and Zou (2008).
The objective is to derive a delay-dependent stability criterion such
that an admissible maximum upper bound dmax of d can be ob-
tained. The larger dmax, the less conservatismof a stability criterion.
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Note that a lifting technique can be used to derive a necessary
and sufficient condition on stability of the system (1) (Xia, Liu, Shi,
Rees, & Thomas, 2007). In fact, introduce an augmented vector as
Φ(k) := col{x(k), x(k − 1), . . . , x(k − d)}. Then, the first equation
of the system (1) is transformed into

Φ(k + 1) = ÃΦ(k), Ã :=


AE Ad
I 0


(2)

where E = [I 0n×nd]. Thus, a necessary and sufficient condition for
the stability of the system (1) is that there exists a real matrix P̃ ∈

Rnd×nd such that ÃT P̃ Ã − P̃ < 0. The drawback of the condition is
that the dimensions of the matrices Ã and P̃ are closely dependent
on the delay size d. For a large d, on the one hand, a large number of
decision variables are required in seeking a suitable real matrix P̃;
and on the other hand, this condition is not easy to use for control
synthesis and filter design.

An alternative method for stability analysis of the system (1) is
the Lyapunov functional method. One usually chooses a Lyapunov
functional candidate as

Ṽ (k) = xT (k)Px(k) +

k−1
j=k−d

xT (j)Qx(j) + d
−1

j=−d

k−1
i=k+j

ηT (i)Rη(i)

where P > 0,Q > 0 and R > 0 are Lyapunov matrices to be de-
termined; and

η(k) = x(k + 1) − x(k). (3)
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Taking the forward difference yields

∆Ṽ (k) = xT (k + 1)Px(k + 1) − xT (k)(P − Q )x(k)
+ d2ηT (k)Rη(k) − xT (k − d)Qx(k − d)

− d
k−1

j=k−d

ηT (j)Rη(j). (4)

A sufficient condition for asymptotic stability of the system (1) is
that there exist real matrices P > 0, R > 0 and Q > 0 and a scalar
ε > 0 such that ∆Ṽ (k) ≤ −εxT (k)x(k) < 0 for x(k) ≠ 0. In order
to derive a linear matrix inequality (LMI)-based stability criterion,
a challenging problem is how to estimate the finite-sum term

F (k) :=

k−1
j=k−d

ηT (j)Rη(j). (5)

Clearly, a tighter lower bound for the term F (k) definitely con-
tributes to a less conservative stability criterion. Up to date, there
are mainly two approaches to deal with F (k).
(i) Jensen-type inequality approach. Applying the Jensen-type in-
equality, one obtains a lower bound for F (k), which is given
by Jiang et al. (2005)

F (k) ≥ B1 :=
1
d
[x(k) − x(k − d)]TR[x(k) − x(k − d)]. (6)

(ii) Free-weighting matrix approach. In He et al. (2008), a free-
weightingmatrix approach is proposed to dealwith the termF (k).
If gaining an insight into the approach in He et al. (2008), one can
find that a different bound for the termF (k) is used,which reads as

F (k) ≥ B2 := 2ρT (k)N[x(k) − x(k − d)] − dρT (k)Zρ(k) (7)

where ρ(k) is some real vector and


Z N
NT R


≥ 0.

It seems that the lower bound B2 in (7) is larger than B1 in
(6) because some free-weighting matrices are introduced in B2.
Unfortunately, it can be proven that B1 ≥ B2. In fact, employing
Lemma 1, which is given at the end of this section, with κ = d,
M1 = Z,M2 = R, S = −N, α = ρ(k) andβ = x(k)−x(k−d) yields
B1 ≥ B2. Moreover, denote S :=


(N, Z)

 Z N
NT R


≥ 0


. Then

B1 = max
(N,Z)∈S

B2. (8)

In fact, taking N =
1
dR, Z =

1
d2
R gives B2 = B1. Therefore, the

free-weighting matrix approach does not provide a tighter lower
bound than the Jensen-type inequality approach for the termF (k).
In other words, stability criteria employing the free-weightingma-
trix approach are of the same conservatism as those employing
the Jensen-type inequality approach for the system (1). Then, some
natural questions arise: Does there exist a tighter lower bound than
B1 for the term F (k)? If yes, how to get it? Answering these ques-
tions is of significance in theory and in practice, which motivates
the current study.

In this paper, we propose a new method to estimate the finite-
sum term F (k). By applying Abel lemma, a novel finite-sum in-
equality for the term F (k) is derived, which is given as

F (k) ≥ B3 :=
1
d
ωT

1Rω1 +
3(d − 1)
d(d + 1)

ωT
2Rω2 (9)

where ω1 := x(k) − x(k − d) and ω2 := x(k) + x(k − d) −
2

d−1k−1
j=k−d+1 x(j). Clearly, the lower bound B3 in (9) is larger than

B1 due to the fact that 3(d−1)
d(d+1) > 0. Hence, B3 is a tighter lower

bound thanB1 forF (k). It is worth pointing out that the inequality
(9) is similar to the Wirtinger-based integral inequality (Seuret &
Gouaisbaut, 2013). Thus, the inequality (9) can be regarded as the

discrete-time version of the Wirtinger-based integral inequality.
To proceed with, applying the inequality (9), a new delay-
dependent stability criterion for the system (1) is formulated. Nu-
merical examples show that the obtained stability criterion can
achieve less conservative results than stability criteria using the
Jensen-type inequality approach and the free-weighting matrix
approach.

To end this section, we introduce three lemmas.

Lemma 1 (Zhang & Han, 2015). Let α and β be real column vectors
with dimensions of n1 and n2, respectively. For given real positive
symmetric matrices M1 ∈ Rn1×n1 and M2 ∈ Rn2×n2 , the following
inequality holds for any scalar κ > 0 and matrix S ∈ Rn1×n2 satisfy-
ing [

M1 S
ST M2

] ≥ 0

−2αT Sβ ≤ καTM1α + κ−1βTM2β. (10)

Lemma 2 (Jiang et al., 2005). For any constant matrix R ∈ Rn×n with
R = RT > 0, integers r1 and r2 with r2 > r1 > 0, vector function
w : {r1, r1 + 1, . . . , r2} → Rn, the following inequality holds

r2−1
j=r1

wT (j)Rw(j) ≥
1

r2 − r1


r2−1
j=r1

w(j)

T

R


r2−1
j=r1

w(j)


.

Lemma 3 (Abel Lemma (Bromwich, 1959)). Suppose that {fj} and {gj}
are two sequences. Then
p

j=m

fj(gj+1 − gj) = (fp+1gp+1 − fmgm) −

p
j=m

gj+1(fj+1 − fj).

2. An Abel lemma-based finite-sum inequality

In this section, we establish an Abel lemma-based finite-sum
inequality for the term SR(r1, r2) given by

SR(r1, r2) :=

r2−1
j=r1

ηT (j)Rη(j) (11)

where r1 and r2(> r1) are two positive scalars, and η is defined in
(3). Let

gj := x(j), fj := r1 + r2 − 1 − 2j. (12)

Then, apply Lemma 3 (Abel lemma) to obtain
r2−1
j=r1

fjη(j) = [fr2x(r2) − fr1x(r1)] + 2
r2−1
j=r1

x(j + 1)

= (r1 − r2 − 1)x(r2) − (r2 − r1 − 1)x(r1) + 2
r2

j=r1+1

x(j)

= −(r2 − r1 − 1)


x(r2) + x(r1) −

2
r2 − r1 − 1

r2−1
j=r1+1

x(j)


. (13)

Moreover, it is easy to verify that
r2−1

j=r1
fj = 0 and

r2−1
j=r1

f 2j =
(r2 − r1)(r2 − r1 − 1)(r2 − r1 + 1)

3
. (14)

Based on (13) and (14), we now establish a new inequality for the
term SR(r1, r2). In doing so, denote

υ1 := x(r2) − x(r1) (15)

υ2 := x(r2) + x(r1) −
2

r2 − r1 − 1

r2−1
j=r1+1

x(j). (16)
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