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a b s t r a c t

This paper focuses on a non-standard constrained nonlinear optimal control problem in which the
objective functional involves an integration over a space of stochastic parameters aswell as an integration
over the time domain. The research is inspired by the problem of optimizing the trajectories of multiple
searchers attempting to detect non-evadingmoving targets. In this paper, we propose a framework based
on the approximation of the integral in the parameter space for the considered uncertain optimal control
problem. The framework is proved to produce a zeroth-order consistent approximation in the sense that
accumulation points of a sequence of optimal solutions to the approximate problem are optimal solutions
of the original problem. In addition, we demonstrate the convergence of the corresponding adjoint
variables. The accumulation points of a sequence of optimal state-adjoint pairs for the approximate
problem satisfy a necessary condition of PontryaginMinimumPrinciple type,which facilitates assessment
of the optimality of numerical solutions.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decades, a variety of computational algorithms have
been developed for solving constrained nonlinear optimal con-
trol problems, including Euler (Polak, 1997, chap. 4), Runge–Kutta
(Kameswaran & Biegler, 2008; Schwartz & Polak, 1996), and
Pseudospectral (Gong, Kang, & Ross, 2006; Kang, 2010; Ross &
Karpenko, 2012). These computational optimal control methods
have achieved great success in many areas of control applications
(Bedrossian, Bhatt, Kang, & Ross, 2009; Bedrossian, Karpenko, &
Bhatt, 2012; Chung, Polak, Royset, & Sastry, 2011; Li, Ruths, Yu, &
Arthanari, 2011). In a standard nonlinear optimal control problem,
the objective functional is of the Bolza type, which consists of an
end cost as well as an integral over the time domain. In this paper
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we are interested in a class of non-standard optimal control prob-
lems in which the objective functional involves an expectation of
a Bolza-type cost functional over a space of stochastic parameters.
This class of problems is defined in the following.

Problem B. Determine the function pair {x, u} with x ∈ W1,∞
([0, 1]; Rnx), u ∈ L∞([0, 1]; Rnu) that minimizes the cost func-
tional

J =


Ω


F (x(1), ω) + G

 1

0
r(x(t), u(t), t, ω)dt


p(ω)dω

subject to the dynamics

ẋ(t) = f (x(t), u(t)), (1)

initial condition x(0) = x0, and the control constraint g(u(t)) ≤ 0
for all t ∈ [0, 1].

In Problem B, W1,∞([0, 1]; Rnx) is the space of all essentially
bounded functions with essentially bounded distributional deriva-
tives, which map the interval [0, 1] into the space Rnx , and L∞

([0, 1]; Rnu) is the set of all essentially bounded functions. The
function p is a continuous probability density function for the
stochastic parameter ω ∈ Ω ⊂ Rnω and we allow r to be vector
valued: that is, r : Rnx × Rnu × R1

× Rnω → RK ,G : RK
→ R.
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Problem B can be viewed as a generalization of the standard
nonlinear optimal control problem where the cost function does
not involve the stochastic parameter ω. Such a problem formula-
tion allows a broad range of existing control problems to be ex-
tended to incorporate parameter uncertainty. For instance, in a
number of optimal control applications such as asset protection
(Ding, Rahmani, & Egerstedt, 2009) and target tracking (Quintero,
Papi, Klein, & Chisci, 2010), the objective functional depends on
other agents whose behavior may involve parameter uncertainty.
Another application which can be addressed using this formula-
tion is optimal path planning in uncertain environments, such as
aircraft routing in a threat environment (Zabarankin, Uryasev, &
Pardalos, 2002) or navigating an unmanned surface vehicle in a
riverine environment (Gadre, Du, & Stillwell, 2012). Problem B is
also closely related to ensemble control problems studied in, e.g.
Ruths and Li (2010, 2012), where the uncertainty appears in both
the cost function and the state dynamics.

Our main motivation to study such non-standard optimal con-
trol problems is from the topic of optimal search for uncertain tar-
gets. Work on search theory can, in general, be divided into two
categories depending on how the target ismodeled.Mangel (1989)
provides a review of the components of the problem and vari-
ous models used. In the first category, the motion of the target
is given by a Markov process. Hellman (1970) and Mangel (1981,
1982) address the problem of computing the posterior distribu-
tion of the target’s position. Necessary and sufficient conditions
for a search plan to be optimal are developed in Hellman (1972),
Ohsumi (1991) and Saretsalo (1973). The second category consid-
ers targets whose dynamics are conditionally deterministic, which
means that the motion of the target depends on a stochastic pa-
rameter, and if the value of this parameter is known, the location of
the target will be known for each time instance. Such conditionally
deterministic targets are considered in Chung et al. (2011), Foraker
(2011), Foraker, Royset, and Kaminer (submitted for publication),
Lukka (1977), Phelps, Gong, Royset, and Kaminer (2012), Pursi-
heimo (1976), Royset and Sato (2010) and Sato and Royset (2010),
where optimal search plans are given by the solutions to some op-
timal control problems with objective functionals involving an in-
tegral over a space of stochastic parameters, as well as the typical
integral over the time-domain. Such optimal search models with
conditionally deterministic targets belong to the non-standard op-
timal control problem considered in this paper, i.e., Problem B.

To briefly demonstrate how the search for conditionally deter-
ministic targets can be modeled as Problem B, consider the prob-
lem of a searcher looking for a moving target in order to maximize
the probability of detecting the target over some time horizon
[0, T ] (without loss of generality we assume the time horizon is
[0, 1] as other time horizons can be handled by rescaling the time
parameter). Let the searcher trajectory, x(t), be determined by the
dynamical system (1) with initial condition x0. We assume that
the target’s motion is conditionally deterministic. In other words,
there exists a random vector ω ∈ Ω ⊂ Rnω , such that the tra-
jectory of the target conditioned on ω is given by y(·, ω). It is as-
sumed that the probability density of ω over Ω is known to the
searchers and is given by p : Ω → R+. The final component of
the search model is a function describing the effectiveness of the
searcher. Let r̃ : Rnx × Rny → R be the instantaneous rate of de-
tection such that the probability of detection in a sufficiently small
interval [t, t+1t], conditioned onω, is given by r̃(x(t), y(t, ω))1t .
The rate function r̃ is chosen to model the qualities of sensors such
as acoustic and sonar sensors. Denote P(t) to be the probability of
non-detection at time instance t conditioned on ω. Then

P(t + 1t) = P(t)(1 − r̃(x(t), y(t, ω))1t).

As 1t → 0 we get

P(t) = exp

−

 t

0
r̃(x(τ ), y(τ , ω))dt


.

Thus the probability that the target is not detected in the time in-
terval [0, 1] is given by the integral

J =


Ω

exp

−

 1

0
r̃(x(t), y(t, ω))dt


p(ω)dω.

The problem of finding the trajectory for the searcher which mini-
mizes the probability of not detecting the target can nowbe framed
as a special case of Problem B, with cost functional given by J[·]
defined above. Detailed derivation of optimal search models in-
cluding the construction of detection rate function r̃ can be found
in Chung et al. (2011), Foraker (2011) and Foraker et al. (submit-
ted for publication), as well as in Section 5 where an example of an
optimal search problem is solved.

Given the difficulty in solving standard nonlinear optimal con-
trol problems, it is not surprising that the inclusion of the expec-
tation of the cost functional over the parameter space, combined
with the nonlinear dynamics and control constraints, makes Prob-
lem B particularly challenging. In the literature, some aspects of
ProblemB are considered, usually in simplified settings. Early stud-
ies into the search problem consider simplified searcher dynamics
or conditionally deterministic targets subject to additional special
restrictions (Lukka, 1977; Pursiheimo, 1976; Stone, 1977). For ex-
ample, a necessary condition for optimality is developed in Pursi-
heimo (1976) for a type of optimal search problem with discrete
parameter space. In Lukka (1977), a necessary condition for opti-
mality in the continuous-space setting is derived for a single inte-
grator linear dynamics and a box control constraint. More recent
works consider general constrained nonlinear dynamics. In Chung
et al. (2011) a numerical algorithm is provided to calculate an op-
timal solution for a special case of search for a target moving at
a constant velocity in a channel. Foraker (2011) and Foraker et al.
(submitted for publication) use a composite-Simpson integration
scheme to discretize a two-dimensional parameter space and de-
velop a computational method for solving a reduced version of
Problem B. Foraker (2011) and Foraker et al. (submitted for publi-
cation) also analyze the performance of the computationalmethod
using Polak’s consistent approximation theory (Polak, 1997, Sec-
tion 3.3). Ruths and Li (2012) consider an optimal ensemble con-
trol problem, which is more general than Problem B in the sense
that the uncertain parameter appears in both the cost function and
the state dynamics. Consistency and convergence results are devel-
oped in Ruths and Li (2012) for a particular computational method
based on a LGL-pseudospectral approximation in both the param-
eter and time domains.

In this paper we propose a computational framework for the
solution of the uncertain optimal control Problem B. Based on
the numerical approximation of the integral over the stochastic
parameters in the objective functional, the considered uncertain
optimal control problem can be approximated by a sequence of
standard nonlinear optimal control problems, which can in turn be
solved using existing computationalmethods such as Runge–Kutta
(Kameswaran & Biegler, 2008; Schwartz & Polak, 1996) and pseu-
dospectral (Gong et al., 2006) approaches. To ensure meaningful
results in this computational framework, it is essential to guaran-
tee that the discretization schemes provide valid approximations
to the original non-standard optimal control Problem B. Indeed,
even for standard optimal control problems, there are counterex-
amples showing that an inappropriately designed discretization
may not be convergent (Cullum, 1972). In this paper, we show that
the proposed computational framework approximates the optimal
solution to the non-standard optimal control problem under mild
assumptions. In particular, we show in Section 3 that the approxi-
mation based on the discretization process satisfies a zeroth-order
consistency property. That is, accumulation points of a sequence
of optimal solutions to the approximate problem are optimal solu-
tions to the original uncertain optimal control problem. We con-
trast this condition to consistency and convergence results on
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