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a b s t r a c t

We derive in a direct and rather straightforward way the null controllability of the N-dimensional heat
equation in a bounded cylinder with boundary control at one end of the cylinder. We use the so-called
flatness approach, which consists in parameterizing the solution and the control by the derivatives of a ‘‘flat
output’’. This yields an explicit control law achieving the exact steering to zero. Replacing the involved
series by partial sums we obtain a simple numerical scheme for which we give explicit error bounds.
Numerical experiments demonstrate the relevance of the approach.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The controllability of the heat equation was first considered
in the 1-D case (Fattorini & Russell, 1971; Jones, 1977; Littman,
1978; Luxemburg & Korevaar, 1971) and very precise results
were obtained by the classical moment approach. Next using
Carleman estimates and duality arguments the null controllability
was proved in Fursikov and Imanuvilov (1996) and Lebeau and
Robbiano (1995) for any bounded domain in RN , any control
time T , and any control region. This Carleman approach proves
very efficient also with semilinear parabolic equations (Fursikov
& Imanuvilov, 1996). By contrast the interest for the numerical
investigation of the null controllability of the heat equation
(or of parabolic equations) is fairly recent: apart from Carthel,
Glowinski, and Lions (1994), the first significant contributions
are Belgacem and Kaber (2011), Boyer, Hubert, and Le Rousseau
(2011), Fernández-Cara and Münch (2011), Fernández-Cara and
Münch (2012), Fernández-Cara and Münch (2013), Labbé and

✩ The material in this paper was partially presented at the 1st IFAC workshop
on Control of Systems Governed by Partial Differential Equations (CPDE2013),
September 25–27, 2013, Paris, France and 52nd IEEE Conference on Decision and
Control (CDC), December 10–13, 2013, Florence, Italy. This paperwas recommended
for publication in revised form by Associate Editor Xiaobo Tan under the direction
of Editor Miroslav Krstic.

E-mail addresses: philippe.martin@mines-paristech.fr (P. Martin),
lionel.rosier@mines-paristech.fr (L. Rosier), pierre.rouchon@mines-paristech.fr
(P. Rouchon).
1 Tel.: +33 140519329; fax: +33 140519165.

Trélat (2006), Münch and Pedregal (2014), Münch and Zuazua
(2010), Zheng (2008) and Zuazua (2006); see also Garcia, Osses,
and Tapia (2013) for an application to some inverse problems.
All the above results rely on some observability inequalities for
the adjoint system. A direct approach which does not involve
the adjoint problem was proposed in Jones (1977), Lin Guo and
Littman (1995), Littman (1978) and Littman and Taylor (2007). In
Jones (1977) a fundamental solution for the heat equation with
compact support in time was introduced and used to prove null
controllability. The results in Jones (1977) and Rosier (2002) can
be used to derive control results on a bounded interval with two
or one boundary control in some Gevrey class, or on a bounded
domain of RN with a control supported on the whole boundary
(see also Littman & Taylor, 2007). An extension of those results to
the semilinear heat equation in 1-D was obtained in Lin Guo and
Littman (1995) in a more explicit way through the resolution of an
ill-posed problem with data of Gevrey order 2 in t .

In this paper, which builds on the preliminary versions (Martin,
Rosier, & Rouchon, 2013a,b), we derive in a straightforward way
the null controllability of the heat equation in a bounded cylin-
der Ω = ω × (0, 1) ⊂ RN with Neumann boundary control on
ω ×{1}. More precisely given any final time T > 0 and initial state
θ0 ∈ L2(Ω) we provide an explicit and very regular control such
that the state reached at time T is exactly zero.Weuse the so-called
flatness approach (Fliess, Lévine, Martin, & Rouchon, 1995), which
consists in parameterizing the solution θ and the control u by the
derivatives of a ‘‘flat output’’ y; this notion was initially introduced
for finite-dimensional (nonlinear) systems, and later extended to
(in particular) parabolic 1-dimensional PDEs (Laroche, Martin, &

http://dx.doi.org/10.1016/j.automatica.2014.10.049
0005-1098/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2014.10.049
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2014.10.049&domain=pdf
mailto:philippe.martin@mines-paristech.fr
mailto:lionel.rosier@mines-paristech.fr
mailto:pierre.rouchon@mines-paristech.fr
http://dx.doi.org/10.1016/j.automatica.2014.10.049


3068 P. Martin et al. / Automatica 50 (2014) 3067–3076

Rouchon, 2000; Lynch & Rudolph, 2002; Meurer, 2011; Meurer &
Zeitz, 2008). Choosing a suitable trajectory for this flat output y
then yields an explicit series for a control achieving the exact steer-
ing to zero. Note this paper is probably the first example of using
flatness for the motion planning of a ‘‘truly’’ N-dimensional PDE.
Comparing our results to Lin Guo and Littman (1995) and Littman
and Taylor (2007) we note that: (i) our control is not supported on
the whole boundary even in dimension N > 1; (ii) the control and
the solution are Gevrey of order s ∈ (1, 2) in time; (iii) the control
and the solution are developed in series whose easily computed
partial sums yield accurate numerical approximations of both the
control and the solution.

The paper runs as follows. In Section 3 we consider the control
problem in dimension N = 1. In Proposition 1 we investigate an
ill-posed problem with Cauchy data in a Gevrey class and prove
its (global) well-posedness. Theorem 3 then establishes the null
controllability in small time for any initial data in L2. In Section 4we
extend these results to the cylinderΩ = ω×(0, 1) ⊂ RN . Section 5
provides accurate error estimateswhen the various series involved
are replaced by their partial sums. Finally in Section 6 some
numerical experiments demonstrate the interest of the approach.

2. Preliminaries (Gevrey functions)

In the sequel we consider series with infinitely many deriva-
tives of functions. The notion of Gevrey order is a way of esti-
mating the growth of these derivatives: we say that a function
y ∈ C∞([0, T ]) is Gevrey of order s ≥ 0 on [0, T ] if there exist
positive constantsM, R such thaty(p)(t)

 ≤ M
p!s

Rp
∀t ∈ [0, T ], ∀p ≥ 0.

More generally if K ⊂ RN is a compact set and y is a function of
class C∞ on K (i.e. y is the restriction to K of a function of class C∞

on some open neighborhood Ω of K ), we say y is Gevrey of order
s1 in x1, s2 in x2, . . . , sN in xN on K if there exist positive constants
M, R1, . . . , RN such that ∀x ∈ K , ∀p ∈ NN

∂p1
x1 ∂p2

x2 · · · ∂pN
xN y(x)

 ≤ M

N
i=1

(pi!)si

N
i=1

Rpi
i

.

By definition, a Gevrey function of order s is also of order r for r ≥ s.
Gevrey functions of order 1 are analytic (entire if s < 1). Gevrey
functions of order s > 1 may have a divergent Taylor expansion;
the larger s, the ‘‘more divergent’’ the Taylor expansion. Impor-
tant properties of analytic functions generalize to Gevrey functions
of order s > 1: the scaling, addition, multiplication and deriva-
tion of Gevrey functions of order s > 1 is of order s, see Ramis
(1978), Rudin (1987) and Yamanaka (1989). But contrary to ana-
lytic functions, Gevrey functions of order s > 1 may be constant
on an open set without being constant everywhere. For example
the ‘‘step function’’

φs(t) :=


1 if t ≤ 0
0 if t ≥ 1

e−(1−t)−k

e−(1−t)−k
+ e−t−k if t ∈ (0, 1),

where k = (s−1)−1 is Gevrey of order s on [0, 1] (and in fact onR);
notice φs(0) = 1, φs(1) = 0 and φ

(i)
s (0) = φ

(i)
s (1) = 0 for all i ≥ 1.

In conjunction with growth estimates we will repeatedly use
Stirling’s formula n! ∼ (n/e)n

√
2πn.

3. The one-dimensional heat equation

For simplicity we first study the 1-D heat equation with Neu-
mann boundary control

∂tθ(t, x) − ∂2
x θ(t, x) = 0, (t, x) ∈ (0, T ) × (0, 1) (1)

∂xθ(t, 0) = 0, t ∈ (0, T ) (2)
∂xθ(t, 1) = u(t), t ∈ (0, T ) (3)

with initial condition in L2(0, 1)

θ(0, x) = θ0(x), x ∈ (0, 1).

We claim the system (1)–(3) is ‘‘flat’’ with y(t) := θ(t, 0) as
a flat output, meaning there is (in appropriate spaces of smooth
functions) a 1–1 correspondence between arbitrary functions t →

y(t) and solutions of (1)–(3).
We first seek a formal solution in the form

θ(t, x) :=


i≥0

xi

i!
ai(t)

where the ai’s are functions yet to define. Plugging this expression
into (1) yields
i≥0

xi

i!
[ai+2 − a′

i] = 0,

hence ai+2 = a′

i for all i ≥ 0. On the other hand y(t) = θ(t, 0) =

a0(t), and (2) implies a1(t) = 0. As a consequence a2i = y(i) and
a2i+1 = 0 for all i ≥ 0. The formal solution thus reads

θ(t, x) =


i≥0

x2i

(2i)!
y(i)(t) (4)

while the formal control is given by

u(t) = θx(t, 1) =


i≥1

y(i)(t)
(2i − 1)!

. (5)

We now give a meaning to this formal solution by restricting
t → y(t) to be Gevrey of order s ∈ [0, 2).

Proposition 1. Let s ∈ [0, 2), −∞ < t1 < t2 < ∞, and y ∈

C∞([t1, t2]) satisfying for some constants M, R > 0y(i)(t)
 ≤ M

i!s

Ri
, ∀i ≥ 0, ∀t ∈ [t1, t2]. (6)

Then the function θ defined by (4) is Gevrey of order s in t and s/2 in
x on [t1, t2] × [0, 1]; hence the control u defined by (5) is also Gevrey
of order s on [t1, t2].

Proof. Wemust prove the formal series

∂m
t ∂n

x θ(t, x) =


2i≥n

x2i−n

(2i − n)!
y(i+m)(t) (7)

is uniformly convergent on [t1, t2] × [0, 1] with growth estimates
of the form∂m

t ∂n
x θ(t, x)

 ≤ C
m!

s

Rm
1

n!
s
2

Rn
2

. (8)

By (6), we have for all (t, x) ∈ [t1, t2] × [0, 1] x2i−n

(2i − n)!
y(i+m)(t)

 ≤
M

Ri+m

(i + m)!s

(2i − n)!

≤
M

Ri+m

(2i+mi!m!)s

(2i − n)!
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