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a b s t r a c t

This paper deals with the problem of average consensus of a set of time-varying reference signals in a
distributedmanner. We propose a new class of discrete time algorithms that are able to track the average
of the signals with an arbitrarily small steady-state error and with robustness to initialization errors.
We provide bounds on the maximum step size allowed to ensure convergence to the consensus with
error below the desired one. In addition, for certain classes of reference inputs, the proposed algorithms
allow arbitrarily large step size, an important issue in real networks, where there are constraints in the
communication rate between the nodes. The robustness to initialization errors is achieved by introducing
a time-varying sequence of damping factors thatmitigates past errors. Convergence properties are shown
by the decomposition of the algorithms into sequences of static consensus processes. Finally, simulation
results corroborate the theoretical contributions of the paper.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper studies the problem of reaching the average of a
set of time-varying reference signals in a distributed manner, the
so called distributed dynamic average consensus. In this problem,
each node of the networkmeasures a different time-varying signal
and the objective is that agents track the average of all measured
signals. Solutions to this problem find numerous applications in di-
verse fields such as sensor fusion, Spanos, Olfati-Saber, and Mur-
ray (2005); cooperative control, Ren (2007); decision making with
changing opinions, Montijano, Martínez, and Sagues (2011); and
Kalman filtering, Olfati-Saber (2007).

Most of the solutions in the literature consider continuous-time
algorithms. Frequency domain analysis is used to guarantee zero
steady-state error of ramp inputs in Spanos et al. (2005). The ap-
proach presented in Ren (2007) considers a common reference
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input for all the nodes in the network. A PI-dynamic consensus al-
gorithm is presented in Freeman, Yang, and Lynch (2006) and pos-
teriorly extended in Bai, Freeman, and Lynch (2010) and high order
continuous-time dynamic average consensus protocols are inves-
tigated in Nosrati, Shafiee, and Menhaj (2009). A good property of
these algorithms is their natural robustness against initialization
errors. Chen, Cao, and Ren (2012) propose a discontinuous con-
trol algorithm able to track bounded signals with bounded deriva-
tives. Non-linear protocols with bounded steady-state error are
defined in Nosrati, Shafiee, and Menhaj (2012). Recently, Kia,
Cortés, and Martínez (2013) have introduced continuous-time al-
gorithms to solve the dynamic consensus problem. Although all
these approaches can be discretized using, e.g., Euler method, the
step size they can afford is usually limited.

Discrete-time approaches are more appealing in this regard be-
cause they usually can handle larger step-sizes and, thus, have
lower communication requirements. To the best of the authors
knowledge, the only pure discrete-time approaches (i.e., they do
not arise from a discretization) are the ones in Yuan, Liu, Mur-
ray, and Gonçalves (2012) and Zhu and Martínez (2010). The
convergence analysis of Zhu and Martínez (2010) relies on input-
to-output stability, providing bounds on the step size the nodes can
choose to guarantee a desired steady-state error with respect to
the average. The approach in Yuan et al. (2012) is able to reach dy-
namic consensus in minimal time, provided that the conditions on
the step size given in Zhu andMartínez (2010) are satisfied and the
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communication graph is fixed. Unfortunately, these approaches are
not robust to initialization errors ormeasurement noise, which im-
plies they will fail in presence of disturbances.

In this paper we overcome this limitation by proposing a new
algorithm inspired by the one in Zhu andMartínez (2010). Our con-
tribution is a new class of discrete time algorithms that are able
to reach the dynamic average consensus of a large set of func-
tionswith robustness to initialization errors by introducing a time-
varying sequence of damping factors that mitigates past errors. In
addition, for certain classes of reference inputs, the proposed algo-
rithms allow arbitrarily large step size. For the convergence anal-
ysis we decompose our algorithms into a sum of static consensus
processes, analyzing the convergence of each of them by means of
the eigenvalues of the weight matrices. Finally, we demonstrate
the performance of our algorithms with simulations.

The rest of the paper is organized as follows: In Section 2 we
introduce the dynamic average consensus problem. Section 3 de-
scribes the robust kth order dynamic average consensus (RKODAC)
algorithm. We discuss the design of the damping factors of the al-
gorithms in Section 4. Some simulations are shown in Section 5.
Finally, the conclusions of this work are in Section 6.

2. Preliminaries and problem statement

We consider a sensor network of N nodes labeled by i ∈ V =

{1, . . . ,N}. Communications between the nodes are defined ac-
cording to a fixed undirected graph G = (V, E), where E ⊂ V ×V
represents the edge set. In this way, nodes i and j can communicate
if and only if (i, j) ∈ E . Along the paper we assume that the com-
munication graph is connected. The set of neighbors of node i ∈ V
is the subset of nodes that can directly communicate with it; i.e.,
Ni = {j ∈ V | (i, j) ∈ E}.

Define A = (aij) ∈ RN×N as the weight matrix associated to G,
with aij the weight associated to the exchange of information be-
tween nodes i and j. These weights satisfy the following assump-
tion:

Assumption 2.1 (Properties of the Weight Matrix). The weight ma-
trixA is compatible with the underlying graph,G, i.e., it is such that
aii > 0, aij = 0 if (i, j) ∉ E, aij > 0 if and only if (i, j) ∈ E , and
satisfies A1 = 1, 1TA = 1T , with 1 = (1, . . . , 1)T .

Since the communication graph is connected, the assumption im-
plies that A has one eigenvalue λ1 = 1with associated right eigen-
vector 1 and algebraic multiplicity equal to one. The rest of the
eigenvalues, sorted in decreasing order, satisfy 1 > λ2 ≥ · · · ≥

λN > −1. Without loss of generality, we assume that the alge-
braic connectivity is defined by λ2, i.e., |λ2| ≥ |λN |. Note that
the assumption on doubly stochastic weights can be easily satis-
fied using, e.g., Metropolis Weights, Xiao and Boyd (2004), or us-
ing distributed balancing techniques such as the ones proposed by
Gharesifard and Cortés (2012) and Priolo, Gasparri, Montijano, and
Sagues (2013).

Each node in the network is able to measure a local, continuous
physical process, ri : R → R, i ∈ {1, . . . ,N}. Let r(t) = (r1(t),
. . . , rN(t))T be the vector of the signals measured by each node.
The final goal of the network is to design a distributed algorithm
that enables anonymous nodes to eventually track the average of
the signal inputs ri(t), i ∈ {1, . . . ,N}, using only local information.
We denote this average by r̄(t),

r̄(t) =
1
N


i

ri(t).

In order to compute r̄(t) each node maintains an estimation xi : N
→ R, i ∈ {1, . . . ,N}, which is updated at discrete times, n ∈ N.
The vector with all the estimations is denoted by x(n) = (x1(n),
. . . , xN(n))T . The sample period used by the nodes to estimate r̄(t)
is denoted by h. Therefore, the relationship between the continu-
ous time and the discrete time updates is defined by nh = t .

Another important issue that we will analyze in the paper is
how big h can be while ensuring that x(n) → r̄(nh)1 with a suffi-
ciently small error as n evolves. For the sake of brevity in the no-
tation, along the paper we will omit the time dependence of the
input signals, using ri(n) to denote the value of the input at time
instant nh.

3. RKODAC: robust k-order dynamic average consensus algo-
rithm

In this section,we propose a consensus algorithm to achieve the
robust dynamic average consensus. We let k ∈ N be the order of
the algorithm used to solve the problem,which is fixed a priori and
equal for all the nodes in the network. From now on we will refer
to this algorithm as the kth order dynamic consensus algorithm.
We will show later the kind of signals that can be tracked by the
method depending on the value of k.

Let us define the standard kth order differences by

∆[k]ri(n) = ∆[k−1]ri(n) − ∆[k−1]ri(n − 1), (1)

where ∆[0]ri(n) = ri(n). We let ∆[k] r̄(n) represent the variation in
the average of the kth difference of the signals, i.e.,

∆[k] r̄(n) =
1
N


i

∆[k]ri(n). (2)

In the kth order dynamic consensus each node exchanges with its
neighbors a k-dimensional variable (x[1]

i , . . . , x[k]
i ). We denote by

x[ℓ]
= (x[ℓ]

1 , . . . , x[ℓ]
N )T the vector with the ℓth component of the

variables of all the nodes. The update executed by the nodes has
the following cascade form:

x[1]
i (n + 1) = γn


aiix

[1]
i (n) +


j∈Ni

aijx
[1]
j (n)


+ ∆[k]ri(n) + (1 − γn)∆

[k−1]ri(n − 1),

x[ℓ]
i (n + 1) = γn


aiix

[ℓ]
i (n) +


j∈Ni

aijx
[ℓ]
j (n)


+ x[ℓ−1]

i (n + 1),

(3)

for ℓ ∈ {2, . . . , k}, where aij are the local weights, i ∈ {1, . . . ,N},
and γn > 0 are damping factors, which will be defined later in the
section.

Let us note the distributed nature of the algorithm, in which the
nodes, besides the damping factors, only use their signal and the
estimations of the average provided by neighbors in the commu-
nication graph.

Denoting ∆[ℓ]r(n) = (∆[ℓ]r1(n), . . . , ∆[ℓ]rN(n))T , the update
can also be put in vectorial form by

x[1](n + 1) = γnAx[1](n) + ∆[k]r(n) + (1 − γn)∆
[k−1]r(n − 1),

x[ℓ](n + 1) = γnAx[ℓ](n) + x[ℓ−1](n + 1),
(4)

for ℓ ∈ {2, . . . , k}.

Remark 3.1. Intuitively, x[1](n+1) aims to be an approximation to
∆[k−1] r̄(n). The termAx[1](n) contributes to improving x[1](n) as an
approximation to the average of (k−1)th order differences at itera-
tion n−1, ∆[k−1] r̄(n−1), whereas the term∆[k]r(n) contributes to
time-advancing the approximation from (n−1) to n, that is, it acts
as a correction term. The factor γn is introduced to damp the initial
errors and the term (1−γn)∆

[k−1]r(n−1) is needed to compensate
for the effect of γn on Ax[1](n). The successive terms, x[ℓ](n + 1),
contain the estimation of ∆[k−ℓ] r̄(n), which are computed by av-
eraging the estimation at the previous time and summing the av-
erage estimation of the next order difference, x[ℓ−1](n + 1), to



Download	English	Version:

https://daneshyari.com/en/article/695445

Download	Persian	Version:

https://daneshyari.com/article/695445

Daneshyari.com

https://daneshyari.com/en/article/695445
https://daneshyari.com/article/695445
https://daneshyari.com/

