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a b s t r a c t

The use of feedback to create closed-loop eigenstructures with high sensitivity has received
some attention in the Structural Health Monitoring field. Although practical implementa-
tion is necessarily digital, and thus in sampled time, work thus far has center on the con-
tinuous time framework, both in design and in checking performance. It is shown in this
paper that the performance in discrete time, at typical sampling rates, can differ notably
from that anticipated in the continuous time formulation and that discrepancies can be
particularly large on the real part of the eigenvalue sensitivities; a consequence being
important error on the (linear estimate) of the level of damage at which closed-loop stabil-
ity is lost. As one anticipates, explicit consideration of the sampling rate poses no special
difficulties in the closed-loop eigenstructure design and the relevant expressions are devel-
oped in the paper, including a formula for the efficient evaluation of the derivative of the
matrix exponential based on the theory of complex perturbations. The paper presents an
easily reproduced numerical example showing the level of error that can result when
the discrete time implementation of the controller is not considered.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A classic problem in control theory is the selection of static gains leading to closed-loop eigenstructures with desired
characteristics. In structures subjected to narrow band disturbances, for example, one seeks to keep all the close-loop poles
away from the peaks of the excitation spectrum. Hardware deployed for vibration control can also be used to perform closed-
loop Structural Health Monitoring (SHM) in periods when its primary function is unnecessary. In this instance the objective
is not to exert control on the response but to create an eigenstructure whose sensitivity facilitates interrogation regarding
the existence of damage. As one gathers, this is an application where eigenvalue sensitivity plays a central role.

The idea of doubling up the hardware to perform SHM in closed-loop was introduced by Ray and Tian [1] who recom-
mended, based on single-degree-of-freedom considerations, that the gain be selected to shift the poles towards lower fre-
quencies. In a subsequent examination, Jiang, Tang and Wang [2] used the fact that the expression for the closed-loop
sensitivity is a function of the right and left eigenvectors and exploited the freedom in eigenvector placement offered by
multiple actuators to increase sensitivity while penalizing the magnitude of the control gain. Other work on the optimization
of the gain for sensitivity and some exploratory experimental work can be found in [3–8].

Studies carried out thus far on closed-loop sensitivity enhancement have been based on the continuous time (CT) frame-
work. Practical implementations are, however, invariably digital and the question opens up as to how the digital to analog

https://doi.org/10.1016/j.ymssp.2017.11.014
0888-3270/� 2017 Elsevier Ltd. All rights reserved.

E-mail address: bernal@neu.edu

Mechanical Systems and Signal Processing 105 (2018) 481–487

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier .com/locate /ymssp

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2017.11.014&domain=pdf
https://doi.org/10.1016/j.ymssp.2017.11.014
mailto:bernal@neu.edu
https://doi.org/10.1016/j.ymssp.2017.11.014
http://www.sciencedirect.com/science/journal/08883270
http://www.elsevier.com/locate/ymssp


(D/A) conversion and the sampling rate affect the results. This paper shows that the eigenvalue sensitivities realized in the
discrete time (DT) implementation can differ significantly from the CT results, even at sampling rates that can be considered
fast relative to the shortest resonant period in the system. Particularly important in this regard being the fact that the dis-
crepancy is often large on the real part of the sensitivity, and thus on the level of parameter changes (damage in the Struc-
tural Health Monitoring application) for which the closed-loop is predicted to remain stable in a linear estimate. In what
follows we will refer to the eigenvalues and sensitivities that would be obtained by an ideal identification algorithm oper-
ating on the sampled data as the ‘‘realized” closed-loop eigenvalues and sensitivities. As noted, the realized properties
depend on the sampling rate and on the specifics of the D/A conversion, and on this last aspect we adopt the simplest of
all the options that satisfy the causality constraint, the widely used zero order hold (ZOH).

A feature in the computation of DT sensitivities that does not exist in the CT model is the need for the derivative of the
matrix exponential. Included in the paper are two exact expressions for this derivative, the first in terms of an integral [9]
and the second as an infinite series in terms of lie brackets [10]. Because it is somewhat tangential to the paper’s objective we
do not discuss the matter in detail but note that their numerical evaluation is not efficient compared to an estimation based
on the theory of complex perturbations [11–13], which is thus recommended for applications. The paper derives the expres-
sions that give the realized closed-loop sensitivity, presents a brief discussion on the linear estimation of parameter changes
leading to closed-loop instability and includes an easily reproducible numerical example exemplifying the main points.

2. Effective closed-loop sensitivity

The state space recurrence in discrete time for a Linear Time Invariant system operating in closed-loop writes

xkþ1 ¼ Adxk þ Bd;uuk þ Bd;f fk ð1Þ

where Ad 2 RNxN, Bd;u 2 RNxr and Bd;f 2 RNxq are the transition, control to state, and external forces to state matrices, respec-

tively, and x, u and f 2 RNx1;2 Rrx1;2 Rqx1 are the state, the control forces, and the exogenous excitation, with N = system
order, r = number of actuators and q = number of external actions. For a control action based on static constant gain one has

uk ¼ �Kyk ¼ �KCxk ð2Þ
where C 2 RmxN is the state to output matrix, with m = number of measurements, and the minus sign is, of course, conven-
tional. In writing Eq. (2) we’ve assumed that the measurements do not include collocated accelerations. Substituting Eq. (2)
into Eq. (1) the transition matrix in closed-loop writes

�Ad ¼ Ad � BdKC ð3Þ

Let h be a parameter of the description of the system in CT, differentiating Eq. (3) with respect to h writes

�A0
d ¼ A0

d � B0
dKC ð4Þ

where independence of C from the parameter implies that acceleration measurements have been excluded. Given a non-
defective matrix �AdðhÞwith eigenvalues kdðhÞ and left and right side eigenvectorsuðhÞ and wðhÞ the derivative of the jth eigen-
value with respect to h writes

k0
j ¼ uT

j
�A0
dwj ð5Þ

where we’ve left out explicit reference to the parameter to simplify the notation. The relation between Bd in Eq. (4) and its
continuous time counterpart is a function of how the control action is delivered. It is common to operate on the premise that
this action is applied though a D/A zero order hold circuit, which, neglecting delays, leads to the relation [14,15]

Bd ¼ A�1
c ðAd � IÞBc ð6Þ

with Bc = the control input to state matrix in continuous time. Differentiating Eq. (6) writes

B0
d ¼ A�1

c ðA0
dBc þ AdB

0
c � B0

c � A0
cBdÞ ð7Þ

and substituting Eq. (7) into Eq. (4) gives

�A0
d ¼ A0

d � A�1
c fA0

dBc þ ðAd � IÞB0
c � A0

cBdgKC ð8Þ
The open-loop transition matrix in discrete time is given by

Ad ¼ eAcDt ð9Þ
where Dt is the sampling time step. The derivative of Eq. (9) is needed to evaluate Eq. (8) and in doing so it is necessary to
keep in mind that the derivative of the exponential matrix does not follow the elementary calculus rules but writes [9]
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