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a b s t r a c t

An alternative stability analysis theorem for nonlinear periodic discrete-time systems is presented. The
developed theoremoffers a trade-off between conservatism and complexity of the corresponding stability
test. In addition, it yields a tractable stabilizing controller synthesis method for linear periodic discrete-
time systems subject to polytopic state and input constraints. It is proven that in this setting, the proposed
synthesis method is strictly less conservative than available tractable synthesis methods. The application
of the derived method to the satellite attitude control problem results in a large region of attraction.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This work deals with stability and stabilization of periodically
time-varying systems, or shortly, periodic systems. Stability anal-
ysis and stabilization of periodic systems are typically handled
by means of periodically time-varying standard Lyapunov func-
tions (LFs), see Jiang and Wang (2002) for the nonlinear case and
Bittanti and Colaneri (2009) for the linear case. For most of the
available controller synthesis methods for periodic systems, exis-
tence of a periodically time-varying LF for the closed-loop dynam-
ics can be derived, either directly or by the converse result in Jiang
and Wang (2002). Consider methods based on the periodic Ric-
cati equation Bittanti, Colaneri, and De Nicolao (1991) and Varga
(2008), output feedback schemes De Souza and Trofino (2000), H2
synthesis for the case of linear periodic systems with polytopic
uncertainties Farges, Peaucelle, Arzelier, and Daafouz (2007),
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eigenvalue assignment Brunovský (1970), Kabamba (1986) con-
trollability Longhi and Zulli (1995), model predictive control Böhm
(2011), Gondhalekar and Jones (2011), and control with satura-
tion Zhou, Zheng, and Duan (2011). In the monograph (Bittanti &
Colaneri, 2009, Chapter 13), a thorough exposition of existing re-
sults on stabilization techniques, including also frequency domain
considerations or lifting techniques, is presented.

In the presence of constraints, however, stability analysis based
on periodically time-varying standard LFs can yield a conservative
region of attraction, as shown recently in Böhm, Lazar, and Allgo-
wer (2012). Therein, a relaxed stability analysis theorem was de-
rived for autonomous nonlinear periodic systems. The main idea
behind this relaxation is that the Lyapunov function is not required
to decrease at each time instant, as in Bittanti and Colaneri (2009)
or in Jiang and Wang (2002) for the linear case, but at each period.
This paper considers stabilization of linear periodic systems with
inputs, subject to polytopic state and input constraints, bymeans of
linear periodic state-feedback control laws. The presence of input
constraints further motivates the need for a relaxation of the clas-
sical stability analysis theorems Bittanti and Colaneri (2009) and
Jiang and Wang (2002). For the case of periodic systems with in-
puts, however, the relaxed periodic Lyapunov conditions in Böhm
et al. (2012) lead to a nonlinear and non-convex optimization prob-
lem which is not tractable.

Motivated by the current status, we propose an alternative
stability analysis theorem for nonlinear periodic systems. This new
result allows the establishment of a tractable constrained synthesis
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method for linear periodic systems, by choosing quadratic periodic
Lyapunov functions. We show how the constrained synthesis
problem with linear periodic state-feedback can be solved by
decomposing the original non-convex optimization problem in
a finite set of semi-definite optimization problems having linear
matrix inequalities (LMIs) as constraints. The equivalence between
the original non-convex problem and the set of semi-definite
optimization problems is formally proven. The method is applied
successfully in the challenging magnetic satellite attitude control
problem. The developed synthesis method yields a large region
of attraction for the resulting closed-loop system while providing
non-trivial performance guarantees.

The remaining part of this paper is structured as follows.
Existing results on Lyapunov stability for periodic systems are
briefly discussed in Section 2. The problem formulation as well
as solutions from existing approaches are presented in Section 3.
The main results are established in Section 4. Application of the
established results to the satellite attitude control problem is
presented in Section 5, while conclusions are drawn in Section 6.
Notation and basic definitions: Let R, R+, Z and Z+ denote the field
of real numbers, the set of non-negative reals, the set of integer
numbers and the set of non-negative integers, respectively. For
every c ∈ R and Π ⊆ R we define Π≥c := {x ∈ Π | x ≥ c},
and similarly Π≤c , RΠ := Π and ZΠ := Z ∩ Π . For N ∈

Z≥1, ΠN
:= Π × · · · × Π . For a vector x ∈ Rn, [x]i denotes the ith

element of x and ∥x∥ denotes its 2-norm, i.e., ∥x∥ :=

n
i=1 |[x]i|2.

The transpose of a matrix X ∈ Rn×m is denoted by X⊤. For a
symmetricmatrix Z ∈ Rn×n let Z ≻ 0(≽0) denote that Z is positive
definite (semi-definite). For a positive definite matrix Z ∈ Rn×n

let λmin(max)(Z) denote its smallest (largest) eigenvalue. Moreover,

for a block symmetric matrix Z =


a b⊤

b c


, where a, b, c are

matrices of appropriate dimensions, the symbol ⋆ is used to denote
the symmetric part, i.e.,


a ⋆
b c


=


a b⊤

b c


. For the definition of

functions of class K, K∞ and KL, refer to Böhm et al. (2012).

2. Preliminaries

Let n,m ∈ Z+ be integers and let X : Z+ → Rn and U : Z+ →

Rm be maps that assign to each k ∈ Z+ a subset of Rn and a subset
of Rm respectively, which contain the origin in their interior. We
consider time-varying nonlinear systems of the form

x(k + 1) = f (k, x(k), u(k)), k ∈ Z+, (1)

where f : Z+ × Rn
× Rm

→ Rn is an arbitrary nonlinear map such
that f (k, 0, 0) = 0, for all k ∈ Z+. The vector x(k) ∈ X(k) is the
system state at time k ∈ Z+ and u(k) ∈ U(k) is the system input
at time k ∈ Z+.

Definition 1. The system (1) is called periodic if there exists anN ∈

Z≥1 such that for all k ∈ Z+ it holds (i) X(k) = X(k + N); (ii)
U(k) = U(k + N); (iii) f (k, x, u) = f (k + N, x, u) for all x ∈ X(k),
for all u ∈ U(k). Furthermore, the smallest such N ∈ Z≥1 is called
the period of system (1).

We consider a periodically time-varying state feedback control
law g : Z+ × Rn

→ Rm such that g(k, 0) = 0, for all k ∈

Z+, g(k, x) = g(k + N, x), for all k ∈ Z+, and g(k, x(k)) ∈ U(k),
for all k ∈ Z+ and for all x(k) ∈ X(k). We assume, for simplicity,
that the period of the control law is equal to the period of system
(1). The corresponding closed-loop system is

x(k + 1) = f (k, x(k), g(k, x(k))), k ∈ Z+. (2)

System (2) is periodic with period N , since f (k + N, x, g(k +

N, x)) = f (k, x, g(k, x)). Inwhat follows, letX0 := X(0) and define

X :=
N−1

k=0 X(k). As such, all state trajectories of system (2) with
x(0) ∈ X0 satisfy x(k) ∈ X, for all k ∈ Z+. For clarity of exposition,
wewill consider constant input and state dimensions for all modes
of the periodic system. The classical time-invariant unconstrained
state-space and input domain is recovered by setting X(k) =

Rn, U(k) = Rm, for all k ∈ Z+.
We adopt the notions of asymptotic stability in a set X0

(AS(X0)), exponential stability in a set X0 (ES(X0)) and region
of attraction (ROA) for system (2) from Böhm et al. (2012). Next,
the notion of a periodically positively invariant (PPI) sequence of
sets is recalled. Let {D(π)}π∈Z[0,N−1] denote a sequence of sets with
D(π) ⊆ X(π) for all π ∈ Z[0,N−1].

Definition 2. The sequence {D(π)}π∈Z[0,N−1] is called periodically
positively invariant for system (2) if for each π ∈ Z[0,N−1], each
k ∈ {iN + π}i∈Z+

and x(k) ∈ D(π), it holds that x(k + N) ∈ D(π)
and x(k + j) ∈ X(k + j), for all j ∈ Z[1,N−1].

The following stability theorems correspond to Böhm et al. (2012)
and Jiang andWang (2002) respectively. These results are adapted
for system (2) and modified appropriately in order to provide a
framework compatible with the results established in this article.

Theorem 1 (Jiang & Wang, 2002). Let {X(k)}k∈Z[0,N−1] be a PPI
sequence of sets w.r.t. (2). Let α1, α2 ∈ K∞, ρ ∈ R[0,1) and let x(·)
be a solution to (2) with x(0) := ξ ∈ X(0). Let V : Z+ × X → R+

be a function, such that V (k, x) = V (k + N, x), for all k ∈ Z+, and
moreover, for all k ∈ Z+ it holds that

α1(∥ξ∥) ≤ V (k, ξ) ≤ α2(∥ξ∥), ∀ξ ∈ X(k) (3a)
V (k + 1, f (k, x(k), g(k, x(k)))) ≤ ρV (k, x(k)), ∀ξ ∈ X(0). (3b)

Then, system (2) is AS(X0).

Theorem 2 (Böhm et al., 2012). Let {X(k)}k∈Z[0,N−1] be a PPI sequence
of sets w.r.t. (2). Let α1, α2 ᾱj, j ∈ Z[1,N−1] be K∞ functions,
η ∈ R[0,1) and x(·) be a solution to (2) with x(0) := ξ ∈ X(0). Let
V : Z+ × X → R+ be a function, such that V (k, x) = V (k + N, x),
for all k ∈ Z+, and moreover, for all k ∈ Z+, for all j ∈ Z[1,N−1], it
holds that

∥x(j)∥ ≤ ᾱj(∥x(j − 1)∥), ∀ξ ∈ X(0) (4a)

α1(∥ξ∥) ≤ V (k, ξ) ≤ α2(∥ξ∥), ∀ξ ∈ X(k) (4b)
V (k + N, x(k + N)) ≤ ηV (k, x(k)), ∀ξ ∈ X(0). (4c)

Then, system (2) is AS(X0).

3. Problem formulation

We consider non-autonomous linear periodic systems

x(k + 1) = A(k)x(k) + B(k)u(k), (5)

where A(k) ∈ Rn×n, B(k) ∈ Rn×m, and A(k) = A(k + N), B(k) =

B(k + N), for all k ∈ Z+. Equivalently to the nonlinear case, by
choosing a linear periodic state-feedback control law with period
N , i.e.,

u(k) = g(k, x(k)) := K(k)x(k), (6)

with K(k) = K(k + N), the closed-loop system is

x(k + 1) = (A(k) + B(k)K(k))x(k). (7)

Next, we consider that system (5) is subject to polytopic state
periodic constraints

X(k) := {x ∈ Rn
: ci(k)x ≤ 1, ∀(i, k) ∈ Z[1,p(k)] × Z+}, (8)
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