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a b s t r a c t

This paper proposes a continuous-time framework for the least-squares parameter estimation method
through evolution equations. Nonlinear systems in the standard state space representation that are linear
in the unknown, constant parameters are investigated. Two estimators are studied. The first one consists
of a linear evolution equationwhile the second one consists of an impulsive linear evolution equation. The
paper discusses some theoretical aspects related to the proposed estimators: uniqueness of a solution and
an attractive equilibrium point which solves for the unknown parameters. A deterministic framework for
the estimation under noisymeasurements is proposed using a Sobolev spacewith negative index tomodel
the noise. The noise can be of large magnitude. Concrete signals issued from an electronic device are used
to discuss numerical aspects.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Least squares (LS) is by far themost popular method for param-
eter estimation. It has been developed under different guises. Dis-
crete and continuous-time approaches were proposed for discrete
and continuous-time, linear and nonlinear systems (Ioannou &
Fidan, 2006; Krstic, 2009; Krstic, Kanellakopoulos, & Kokotović,
1995; Krstic & Kokotović, 1995; Ljung, 1999; Sastry & Bodson,
1989; Sastry & Isidori, 1989). The present work is concerned with
continuous-time frameworks for LS. It seems that continuous-time
LS estimators have been mainly developed in the context of adap-
tive control (Ioannou& Fidan, 2006; Krstic, 2009; Krstic et al., 1995;
Krstic & Kokotović, 1995; Sastry & Bodson, 1989; Sastry & Isidori,
1989). In general, such estimators consist of a set of ordinary dif-
ferential equations fed by the system input and output data. Major
advantages of such estimators reside in the real-time imple-
mentability and suitability to an adaptive control loop. Nonethe-
less, during its convergence, the estimator should be continuously
fed by the system data. Consequently, depending on the conver-
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gence rate, the systemdata can be needed on a big interval of time2
which may not be possible in some applications.3 Typical exam-
ples are unstable plants or plants with restrictions on the state
vector (linear actuators for example) when a certainty equivalence
controller or a primary stabilizing controller is not available. There-
fore, it is quite interesting to develop a continuous-time theoreti-
cal basis to account for LS estimation when the data is available
on a bounded interval of time. The present work proposes such
a continuous-time framework. The approach relies on evolution
equations (infinite dimension) and thus cannot be integrated in an
adaptive control scheme. In order to highlight the practical utility
of the approach, a discrete implementation is given. The compu-
tation cost is evaluated and shown to be carried out by low-cost
real-time microcontrollers in order to accomplish fast parameter
estimation for online plants.

An underlying problem to the design of a continuous-time
estimator resides in the unavailability of the derivative of the
state vector.4 The standard solution (Ioannou & Fidan, 2006; Krstic
et al., 1995; Sastry & Bodson, 1989) uses a filtered version of the

2 This time interval is the whole positive real line in theory due to asymptotic
convergence while in practice it can be considerably reduced by an efficient tuning
of the estimator.
3 The same reasoning applies also to recursive discrete-time least squares (Ljung,

1999) which are not addressed in this work.
4 Assuming that the state vector is measured.
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system equations. The basics of the approach can be seen on the
scalar example y′(τ ) = θy(τ ) where θ denotes the unknown
parameter. With y̌(λ) to denote the Laplace transform of y(τ ),
one has 1

λ+1 (λy̌ − y0) = θ 1
λ+1 y̌. Then the algebraic equation

Y1 − e−τy0 = Y2θ is used in the LS estimator with Y̌1 =
λ
λ+1 y̌ and

Y̌2 =
1
λ+1 y̌. A typical estimator is given by ˙̂

θ =
Y2(Y1−e−τ y0−Y2 θ̂ )√

κ+Y2
2

where κ is a positive constant and the normalization (

κ + Y 2

2 )
−1

enhances the convergence rate of the estimator. A quite interesting
approach that does not rely on estimating the state derivative
is developed in Krstic (2009). An ingenious method (Fliess, Join,
& Sira-Ramirez, 2008; Fliess & Sira-Ramirez, 2003) based on the
algebraic derivative concept permits to obtain an estimator that
does not depend neither on the state derivative nor the initial
condition. Let us illustrate the basics of this method on our scalar
example. Differentiating λy̌ − y0 = θ y̌ once with respect to λ
gives λ−2


y̌ + λ d

dλ y̌ − θ
dy̌
dλ


= 0. Notice that y0 has disappeared.

In addition, themultiplication byλ−2 permits us to obtain integrals
in the time domain

 τ
0 (τ − 2τ1)ydτ1 = θ

 τ
0 (τ − τ1)(−τ1)ydτ1.

The integrals offer a low-pass filtering effect. Thus one can solve
for θ whenever the right-hand side is different from zero. The
approach of Fliess et al. (2008) and Fliess and Sira-Ramirez (2003)
has been specialized to noisy signal derivation in Mboup, Join, and
Fliess (2009) and shown to admit a least squares interpretation.
The method offers a systematic approach to annihilate initial
conditions as well as structured perturbations. In order to deal
with the state derivative in the present work, the computation
technique summarized in the scalar example (Fliess et al., 2008;
Fliess & Sira-Ramirez, 2003) is applied prior to the estimator
design.

The contribution of this work is twofold. First, LS estimators
are developed which are suitable when the systems data are
available on a bounded interval of time. Second, the proposed
framework provides a simple deterministic description for the LS
estimation under noisy measurements where the noise can be
of large magnitude. Note that bounded unknown functions are
usually used to model the noise in a deterministic context.

The paper is organized as follows. Two LS estimators, the first
one based on a linear evolution equation, and the second one based
on an impulsive evolution equation, are proposed and discussed
in Section 3. The deterministic framework for the estimation un-
der noisy measurements is proposed in Section 4 for linear input–
output systems. Section 5 proposes a numerical implementation of
the estimators. Section 6 is dedicated to an experimental validation
in order to discuss the numerical aspect. Let us start in Section 2
with a brief recall about evolution equations in order to clarify sub-
sequent developments.

2. Elementary notions about evolution equations

The content of this section can be found in any introductory
textbook to the theory of evolution equations (see for example
Engel & Nagel, 2000, Evans, 1997, Pazy, 1983 and Zheng, 2004).
Let {S(t); t ≥ 0} be a family of linear operators defined on a
Banach space B. S(t) is said to be a linear semigroup on B if
S(0) = I (I denotes the identity operator on B) and S(t1 + t2) =

S(t2)S(t1) = S(t1)S(t2). It is said to be a semigroup of contractions
if, moreover, ∥S(t)∥ ≤ 1 where ∥ · ∥ is an operator norm on B. In
addition, the semigroup is strongly continuous if limh→+0 S(h)ξ =

ξ . The operator A defined by A := limh→+0
S(h)−I

h is called the
infinitesimal generator of S(t). The Hille–Yosida theorem provides
necessary and sufficient conditions an operator A should satisfy
in order to be a generator of a semigroup of contractions. Let us
denote by D(A) ⊂ B the domain of definition of an operator A.

Theorem 1 (Hille–Yosida, Zheng, 2004). The linear operator A :

D(A) ⊂ B → B is the infinitesimal generator of a linear semigroup
of contractions if, and only if,
(1) A is a densely defined (D(A) is dense in B) and closed operator in

B ,
(2) ∀λ > 0, λI − A is a one-to-one and onto mapping,
(3) ∥(λI − A)−1

∥ ≤
1
λ
.

A linear homogeneous evolution equation is a system given by
( ˙̃
Θ :=

dΘ̃
dt ):

˙̃
Θ = AΘ̃; Θ̃t=0 = ξ̃ , ξ̃ ∈ D(A) (1)
where A is the infinitesimal generator of a strongly continuous
semigroup. A (Banach space valued) function Θ̃(t) : [0,+∞) →

B is said to be a solution of (1) if Θ̃(t) ∈ C1([0,∞); D(A))
such that (1) is satisfied. C1 represents the space of continuously
differentiable functions defined on B. The existence of a unique
solution for (1) is ensured by the following theorem.5

Theorem 2 (Existence and Uniqueness). If A : D(A) ⊂ B → B
generates a strongly continuous semigroup of contractions S(t) on B

then ∀ξ̃ ∈ D(A) the system (1) admits a unique solution given by
Θ̃(t) = S(t)ξ̃ .

3. The estimators

3.1. Problem description and basic assumptions

Consider the nonlinear system which is linear in the parameter
Θ:
x′(τ ) = φ(x, u)+ ϕ(x, u)Θ (2)
where x and u are scalar real variables while Θ = [θ1, . . . , θp]

T
∈

Rp is the vector of unknown constant parameters. The scalar field
φ(x, u) : R × R → R and the vector field ϕ = [ϕ1, . . . , ϕp] with
ϕi(x, u) : R × R → R, i = 1, . . . , p are known and satisfy
standard assumptions about the existence of a unique classical
solution for (2) for a given initial condition. A scalar system is
considered in order to simplify the presentation, and the extension
to multidimensional systems can be done straightforwardly if the
state vector is accessible formeasurements. LetT be a bounded and
connected subset ofR. Given a solution of (2) onT, it is legitimate to
identify φ(x(τ ), u(τ )) and ϕ(x(τ ), u(τ ))with functions depending
on τ only. Thus the notations φ(τ) := φ(x(τ ), u(τ )) and ϕi(τ ) :=

ϕi(x(τ ), u(τ )), τ ∈ T are adopted. Moreover, the following is
assumed.

Assumption 3.1. u(τ ),φ(τ) andϕi(τ ) ∈ L2(T).L2(T) is the space
of square summable functions on T.

Let ϵ be a positive constant and denote by D the set D = [−ϵ, ϵ].
In order to deal with the derivative x′, let v(s), s ∈ D, be a
continuously differentiable function, supported on D such that
v(−ϵ) = v(ϵ) = 0. Introduce Tϵ , an ϵ-neighborhood of T such
that T ⊆ Tϵ ⊂ R and Tϵ = T1 + 2ϵ. Tϵ , T1 and 2ϵ are the Lebesgue
measures ofTϵ ,T andD respectively. Define the convolutions x′

ϵ =

v⋆x′,φϵ = v⋆φ andϕϵ,i = v⋆ϕi. They are supported onTϵ since x′,
φ and ϕ are supported on T. Moreover, notice that− dv

ds ⋆x = v ⋆x′.
Such v(s) can be given by

v(s) = (ϵ2 − s2)χD (3)
where χD is the indicator function of D. Convolving (2) with (3)
leads to:
x′

ϵ(τ ) = φϵ(τ )+ ϕϵ(τ )Θ, τ ∈ Tϵ . (4)

5 Theorem 2 corresponds to Proposition 6.2 p. 145 of Engel and Nagel (2000).
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