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a b s t r a c t

We address the problem of static state linearization of multi-input nonlinear control systems via
coordinate transformation. Necessary and sufficient geometric conditions, in terms of certain set of vector
fields associatedwith the system,were obtained in the early eighties stating the fact that such set of vector
fields should be commutative and of constant rank. The state linearization problem, i.e., the finding of
linearizing coordinates, was thus reduced to solving a set of partial differential equations. The objective
of this paper is to provide an algorithm allowing to compute explicitly the linearizing state coordinates.
The algorithm is performed using a maximum of n − 1 steps (n being the dimension of the system) and
is made possible by extending the explicit solvability of the Flow-Box Theorem to a commutative set
of vector fields. Examples are provided to illustrate the results. An extension of the method to dynamic
feedback linearization is also outlined.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Let first consider a smooth vector field v on Rn, or equivalently,
its associated dynamical system

Ξv : ẋ = v(x) ,


ẋ1 = v1(x)
ẋ2 = v2(x)
· · ·

ẋn = vn(x).

Under the change of coordinates z = ϕ(x) the system Ξv is
transformed into

Ξṽ : ż = ṽ(z) ,


ż1 = ṽ1(z)
ż2 = ṽ2(z)
· · ·

żn = ṽn(z)

where the vector fields v and ṽ are ϕ-related by the partial
differential equation ṽ(ϕ(x)) =

∂ϕ

∂x v(x). The problem of finding a
newcoordinate system inwhich the vector field v takes its simplest
form is centuries old but still of interest nowadays (Arnold, 1988;
Belitskii, 1975, 2002; Bruno, 1989; Cigogna & Walcher, 2002;
Gaeta, 2002; Pérez-Marco, 2003; Walcher, 2000). A well-known
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fact is that when the vector field v is nonsingular at x0, i.e., v(x0) ≠

0, then there is a change of coordinates z = ϕ(x) in whichΞṽ takes
its simplest form

Ξṽ : ż = ṽ(z) ,


ż1 = 0
ż2 = 0
· · ·

żn−1 = 0
żn = 1.

This fact, known as Straightening or Flow-Box Theorem, generalizes
to a family of vector fields as following: take ∆(x) =


v1(x),

. . . , vm(x)

a set of vector fields of constant rankm around a point

x0 with commutative vector fields, i.e., [vi(x), vj(x)] = 0 for
1 ≤ i, j ≤ m. Then new coordinates z = ϕ(x) can be found
such that ϕ∗vi = ei, where {e1, . . . , en} is the standard basis of Rn.
When the vector field v is singular at x0 (v(x0) = 0), the notion
of linearization and later that of normal form was introduced
by Henri Poincaré and followed by a vast literature (see Arnold,
1988; Belitskii, 1975, 2002; Bruno, 1989; Cigogna&Walcher, 2002;
Gaeta, 2002; Pérez-Marco, 2003;Walcher, 2000). Poincaré showed
that a formal diffeomorphism z = ϕ(x) can be found that maps v
into ṽ(z) = Fz when the spectrum λ = (λ1, . . . , λn) of F =

∂v
∂x (x0)

is not resonant, i.e., there is no relation of the form
α1λ1 + · · · + αnλn − λj = 0, for any 1 ≤ j ≤ n
with αi ≥ 0 positive integers such that α1 + · · · + αn ≥ 2.

In the late seventies, Krener (1973) adapted Poincaré’s method
to control systems. Let
Σ(f ,g) : ẋ = f (x)+ g(x)u = f (x)+ g1(x)u1 + · · · + gm(x)um,
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where f , g1, . . . , gm are smooth vector fields on Rn, f (0) = 0 and
u = (u1, . . . , um) ∈ Rm the control input. Krener considered and
solved the following problem (Krener, 1973):

Problem. When does there exists a change of coordinates z =

ϕ(x) that mapsΣ(f ,g) into a linear system

Σ(A,B) : ż = Az + Bu = Az + B1u1 + · · · + Bnum?

Indeed, he showed that the problem is solvable (with a controllable
pair (A, B)) if and only if the set £(f , g) = span


gi, adf (gi), . . . ,

adn−1
f (gi), i = 1, . . . ,m


associated with Σ(f ,g) is full rank n and

pairwise commutative under the Lie bracket [X, Y ] = (∂Y/∂x)X −

(∂X/∂x)Y .

The finding of the linearizing diffeomorphism is then reduced
in solving a system of partial differential equations

∂ϕ

∂x
f (x) =

∂ϕ

∂x1
f1(x)+ · · · +

∂ϕ

∂xn
fn(x) = Aϕ(x)

∂ϕ

∂x
g1(x) =

∂ϕ

∂x1
g11(x)+ · · · +

∂ϕ

∂xn
g1n(x) = B1

· · ·

∂ϕ

∂x
gm(x) =

∂ϕ

∂x1
gm1(x)+ · · · +

∂ϕ

∂xn
gmn(x) = Bm.

For single-input systems (m = 1), some algorithms have already
been proposed in the literature. In Mullhaupt (2006) and Will-
son, Mullhaupt, and Bonvin (2009) a method based on successive
integrations of differential one forms has been given. It relies on
successive rectification of one vector field at a time via the char-
acteristic method using quotient manifolds in order to reduce, at
each step, the dimension of the system by one. More recently we
proposed an algorithm for state linearization in Tall (2009a) and
another one for feedback linearization in Tall (2009b) via Lie se-
ries of vector fields (see Tall, 2010b). Those algorithms give rise
to a sequence of affine k-linear (resp. k-feedback) systems whose
last (n − k) components are linear (resp. in feedback form). This
paper generalizes the results of Tall (2010b) to multi-input con-
trol systems and is a journal version of the conference paper (Tall,
2010c).We extend the explicit solving of the Flow-Box Theorem to
a particular case of Frobenius Theorem, that is, for a commutative,
full rank set of vector fields, we provide an algorithm allowing to
find change of coordinates that simultaneously rectify the whole
set of vector fields (the vector fields associated with the new sys-
tem are constant). Though explicit formulas in terms of power se-
ries of functions are provided, the characteristic method (Isidori,
1995; Mullhaupt, 2006; Willson et al., 2009) or any direct method
that rectifies a vector field or set of vector fields can be applied.
The importance of the algorithm being the fact that it lays out the
steps and the vector fields to be rectified, as well as necessary and
sufficient conditions for this to be done, at each step. Let it bemen-
tioned that Gardner and Shadwick (1992) proposed an algorithm,
called GS algorithm, that is based on integrating Pfaffian systems.
For the class of feedforward and strict feedforward systems, other
algorithms involving differentiation and integration of functions
were provided in Krstic (2004) and Tall (2010a,d). The organization
of the paper is as follows. We first give notations and definitions.
Section 2 deals with the main result of state linearization immedi-
ately followed by a constructive algorithm. The algorithm is based
on an iterative application of a particular case of the Frobenius The-
orem whose constructive proof is given in the Appendix. Section 3
deals with examples illustrating the algorithm.

Notations and definitions

We consider analytic multi-input control systems

Σ(f ,g) : ẋ : f (x)+ g(x)u = f (x)+ g1(x)u1 + · · · + gm(x)um,

where f := (f1, . . . , fn)⊤ and gi := (gi1, . . . , gin)
⊤ are analytic

vector fields on Rn, f (0) = 0 and the control vector fields satisfy
rank {g1(x), . . . , gm(x)} = m.

The systemΣ(f ,g) is called linearly controllable if

Σ(A,B) : ẋ = Ax + Bu = Ax + B1u1 + · · · + Bmum

whereA =
∂f
∂x (0), B = g(0) is controllable, i.e., there exist positive

integers (Brunovský controllability indices) r1 ≥ 1, . . . , rm ≥ 1
with r1 + · · · + rm = n such that

dim span

AjBi, 0 ≤ j ≤ ri − 1, 1 ≤ i ≤ m


= n

and put x = (x⊤

1 , . . . , x
⊤
m)

⊤ with x⊤

i = (xi1, . . . , xiri).
For a complete description and geometric interpretation of

the Brunovský controllability indices we refer to the litera-
ture (Antsaklis & Michel, 1997; Hunt & Su, 1981; Isidori, 1995;
Jakubczyk & Respondek, 1980; Kailath, 1980; Nijmeijer & van der
Schaft, 1990). Without loss of generality we assume that A =

diag {A1, . . . ,Am} and B = (B1 · · · Bm) = diag {b1, . . . , bm} with
each pair (Ai, bi) in Brunovský form of dimension ri and for sim-
plicity that r1 = · · · = rm = r . The case of distinct indices follows
easily by extending the system appropriately. Let 0 ≤ k ≤ r be an
integer.

Definition 1. Σ(f ,g) is called quasi k-linear and we put

Σ(f ,g) , Σ(f k,gk) : ẋ = f k(x)+ gk
1(x)u1 + · · · + gk

m(x)um,

if for any 1 ≤ i ≤ m, we have gk
i (x) = Bi, and

f k(x) = Ax + Fk(x11, . . . , x1k+1, . . . , xm1, . . . , xmk+1)

with Fk(0) = 0 and ∂Fk
∂x (0) = 0.

A quasi k-linear system appears hence to be a linear systemper-
turbed by terms that depend only on the variables xi,1, . . . , xi,k+1
for 1 ≤ i ≤ m. The importance of quasi k-linear systems is demon-
strated next.

2. Main results

Themain result of this paper is an algorithm transforming a sys-
tem into a sequence of quasi k-linear systems. All diffeomorphisms
are local around the equilibrium point.

Theorem 2.1. A linearly controllable system

Σ(f r ,gr ) : ẋ = f r(x)+ gr
1(x)u1 + · · · + gr

m(x)um, x ∈ Rn

is S-linearizable if and only if there exist a sequence ϕr , . . . , ϕ1 of ex-
plicit diffeomorphisms that gives rise to a sequence Σ(f r−1,gr−1), . . . ,

Σ(f 0,g0) of quasi k-linear systems s.t.Σ(f k−1,gk−1) = ϕk
∗Σ(f k,gk).

The quasi k-linear Σ(f k,gk) can be mapped into a quasi (k − 1)-
linear Σ(f k−1,gk−1) if and only if

(S£k) ,


(a)

∂2f k(x)
∂xik+1∂xjk+1

= 0, 1 ≤ i, j ≤ m

(b)

∂f k

∂xik+1
,
∂f k

∂xjk+1


= 0, 1 ≤ i, j ≤ m.

Moreover, in the coordinates z = ϕ1
◦ · · · ◦ ϕr(x):

z = (z11, . . . , z1r , z21, . . . , z2r , . . . , zm1, . . . , zmr)

the systemΣ(f 0,g0) takes the linear form

Σ(f 0,g0) , Σ(A,B) : ż = Az + Bu = Az + B1u1 + · · · + Bmum.
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