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a b s t r a c t

Probabilistic modeling provides the capability to represent and manipulate uncertainty in
data, models, predictions and decisions. We are concerned with the problem of learning
probabilistic models of dynamical systems from measured data. Specifically, we consider
learning of probabilistic nonlinear state-space models. There is no closed-form solution
available for this problem, implying that we are forced to use approximations. In this tuto-
rial we will provide a self-contained introduction to one of the state-of-the-art methods—
the particle Metropolis-Hastings algorithm—which has proven to offer a practical approx-
imation. This is a Monte Carlo based method, where the particle filter is used to guide a
Markov chain Monte Carlo method through the parameter space. One of the key merits
of the particle Metropolis-Hastings algorithm is that it is guaranteed to converge to the
‘‘true solution” under mild assumptions, despite being based on a particle filter with only
a finite number of particles. We will also provide a motivating numerical example illustrat-
ing the method using a modeling language tailored for sequential Monte Carlo methods.
The intention of modeling languages of this kind is to open up the power of sophisticated
Monte Carlo methods—including particle Metropolis-Hastings—to a large group of users
without requiring them to know all the underlying mathematical details.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The true value of measured data arises once it has been analyzed and some kind of knowledge has been extracted from
this analysis. The analysis often relies on the combination of a mathematical model and the measured data. The model is a
compact representation—set of assumptions—of some phenomenon of interest, and establishes a link between that phe-
nomenon and the data, which is expected to provide some insight. The knowledge we seek is typically a function of some
unknown variables or parameters in the model. However, any reasonable model will be uncertain when making statements
about unobserved variables, and uncertainty therefore plays a fundamental role in modeling. Probabilistic modeling allows
the representation and manipulation of uncertainty in data, models, decisions and predictions. The capability to mathemat-
ically represent and manipulate uncertainty—which is essential to the development throughout this tutorial—is provided by
probability theory. A good introduction to the ideas underlying probabilistic modeling in contemporary machine learning is
provided by [1] and from a system identification point of view we recommend [2].
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Throughout this tutorial we are concerned with the problem of learning probabilistic models of nonlinear dynamical sys-
tems frommeasured data, which is sometimes referred to as the nonlinear system identification problem. These models pro-
vide an interpretable representation from which it is possible to extract the knowledge we seek, compared to doing so
directly from the data. The model is thus a natural middle ground between the measured data and that knowledge. More
specifically we are concerned with the nonlinear state-space model (SSM)

xt ¼ f ðxt�1;ut ;v t; hÞ; ð1aÞ
yt ¼ gðxt ;ut; hÞ þ et; ð1bÞ
x0 � pðx0jhÞ; ð1cÞ
h � pðhÞ; ð1dÞ

where yt 2 Y denotes the observed output and ut denotes a known input signal. In the interest of concise notation we will,
without loss of generality, suppress the input signal ut . The unknown variables are the state xt 2 X describing the system’s
evolution over time and the static parameters h. Furthermore, pðhÞ denotes the prior assumptions about h. The stochastic
variables v t and et encode noise, commonly referred to as process noise and measurement noise, respectively. Finally, the
functions f and g encode the dynamics and the measurement equation, respectively.

The first step towards extracting knowledge from a set of measured data y1:T ¼ fy1; . . . ; yTg is to learn a probabilistic
model of the form (1) by computing the conditional distribution of the unknown x0:T and h conditioned on y1:T , denoted
pðx0:T ; hjy1:TÞ. This provides a useful representation which is typically much closer to the knowledge we seek than the mea-
sured data itself. Once we have a representation of this conditional distribution, it can be used to compute more specific
quantities that typically constitute the end result of the analysis. To mention just a few examples of such quantities we have
mean values, variances or estimates of some tail probability.

The key challenge is that, in general, there is no closed form expression available for pðx0:T ; hjy1:TÞ, so we must resort to
approximations. We will focus on approximations based on Monte Carlo sampling which, while being costly to compute,
have the appealing property of converging to the true solution as the amount of computations increases. Over the last dec-
ade, these approximations have evolved rapidly, so that we now have computationally feasible solutions available.

This naturally brings us to the aim of this tutorial, which is to provide a gentle introduction to probabilistic learning of
nonlinear dynamical systems, and to introduce in some detail one of the current state-of-the-art methods to do so. This
method relies on the systematic combination of two Monte Carlo algorithms, where a sequential Monte Carlo algorithm
is used to compute a good proposal distribution for a Markov chain Monte Carlo (MCMC) algorithm. Hence, in terms of meth-
ods, this tutorial is focused on introducing one particular solution rather than surveying all available methods (see e.g. [3,4]
for recent accounts of that sort). However, the key ideas discussed in this tutorial (in the context of the specific method) are
in fact central to many other state-of-the-art Monte Carlo learning methods as well. For example the particle filter itself, and
the fact that it is capable of producing an unbiased estimate of the likelihood, are also of more general interest. In the accom-
panying paper [5], we show how probabilistic modeling, implemented via a new algorithm of the type outlined in this tuto-
rial, is used to solve one of the challenging benchmark problems in this special issue with promising results. We will also hint
at the tailored software that is being developed to make these mathematical tools available to a much wider audience with-
out a thorough knowledge of Monte Carlo methods. Such software allows the user to focus entirely on the modeling problem
and leave the computational learning problem to the software.

In Section 2 we introduce probabilistic nonlinear state-space models in more detail. The model as it is stated in (1) clearly
incorporates uncertainty due to the presence of the noise sources v t and et , as well as uncertainty in the initial state x0 and in
the parameters h. In probability theory, uncertainty is represented using random variables and in Section 2 the probabilistic
nature of the model will be made even more explicit when we represent it as a joint distribution pðx0:T ; h; y1:TÞ of all the ran-
dom variables present in the model. The basic Monte Carlo idea is then introduced in Section 3 together with an explanation
of how this idea can be used to learn the conditional distribution of the parameters given the measurements pðhjy1:TÞ. The
idea is developed further in Section 4, where it becomes clear that we also need information about the unknown state vari-
ables, resulting in the introduction of the sequential Monte Carlo method (a.k.a. the particle filter) to estimate the state vari-
ables. In Section 5, the particle filter is used inside the MCMC method introduced in Section 3. The basic particle filter
construction from Section 4 can be improved in several ways and in Section 6 we discuss some of the most important devel-
opments in this direction. The resulting method is then illustrated using a nonlinear spring-damper system in Section 7.
Finally we conclude with a discussion in Section 8.

2. Probabilistic modeling of dynamical systems

We will refer to the joint distribution of all observed (here y1:T) and unobserved (here x0:T and h) variables as the full prob-
abilistic model, which in our present setting amounts to pðx0:T ; h; y1:TÞ. The idea of using the mathematics of probability to rep-
resent and manipulate uncertainty is commonly referred to as Bayesian statistics ([6]). In order to write down the full
probabilistic model for (1) let us start by noticing that for many models we can express the conditional distribution of yt
given xt and h as

pðytjxt ; hÞ ¼ pet ðyt � gðxt ; hÞ; hÞ; ð2Þ
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