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a b s t r a c t

Probabilistic (or Bayesian) modeling and learning offers interesting possibilities for sys-
tematic representation of uncertainty using probability theory. However, probabilistic
learning often leads to computationally challenging problems. Some problems of this type
that were previously intractable can now be solved on standard personal computers thanks
to recent advances in Monte Carlo methods. In particular, for learning of unknown param-
eters in nonlinear state-space models, methods based on the particle filter (a Monte Carlo
method) have proven very useful. A notoriously challenging problem, however, still occurs
when the observations in the state-space model are highly informative, i.e. when there is
very little or no measurement noise present, relative to the amount of process noise. The
particle filter will then struggle in estimating one of the basic components for probabilistic
learning, namely the likelihood p(datajparameters). To this end we suggest an algorithm
which initially assumes that there is substantial amount of artificial measurement noise
present. The variance of this noise is sequentially decreased in an adaptive fashion such
that we, in the end, recover the original problem or possibly a very close approximation
of it. The main component in our algorithm is a sequential Monte Carlo (SMC) sampler,
which gives our proposed method a clear resemblance to the SMC2 method. Another nat-
ural link is also made to the ideas underlying the approximate Bayesian computation
(ABC). We illustrate it with numerical examples, and in particular show promising results
for a challenging Wiener-Hammerstein benchmark problem.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Probabilistic (or Bayesian) modeling and learning offers interesting and promising possibilities for a coherent and system-
atic description of model and parameter uncertainty based on probability theory [31,33]. The computational tools for prob-
abilistic learning in state-space models have lately been developed. In this paper, we study probabilistic learning based on
measured data fy1; . . . ; yTg , y1:T , which we assume to be well described by a nonlinear state-space model with (almost) no
measurement noise,

xtjðx1:t�1; hÞ � f ðxt jxt�1; ut�1; hÞ; ð1aÞ
yt ¼ gðxtÞ; ð1bÞ
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with some unknown parameters h 2 H which we want to learn. The lack of measurement noise in (1b) gives a deterministic
mapping g : X# Y from the unobserved states xt 2 X to the measurement yt 2 Y, on the contrary to (1a) which encodes
uncertainty about xt , mathematically represented as a probability density f over xt conditional on xt�1 and possibly an exoge-
nous input ut�1. We refer to this uncertainty as process noise, but its origin does not have to be a physical noise, but possibly
originating from lack of information or model errors. The reasoning and contributions of this paper will be applicable also to
the case where the relationship (1b) does contain uncertainty, measurement noise, but its variance is much smaller than the
process noise. As a general term, we refer to the model as having highly informative observations. Furthermore, g could also be
allowed to depend on h and ut , but we omit that possibility for notational clarity.

Models on the form (1) may arise in several practical situations, for instance in a mechanical system where the measure-
ments can be made with good precision but some unobserved forces are acting on the system. The situation may also appear
if the measurements, yet again, can be made with good precision, but the user’s understanding of the physical system is lim-
ited, which in the probabilistic framework can be modeled as a stochastic element in f.

The model (1) defines, together with priors on h, a joint probabilistic model pðy1:T ; x1:T ; hÞ. Probabilistic learning of the
parameters h amounts to computing the parameter posterior pðhjy1:TÞ, where we have conditioned on data y1:T and marginal-
ized over all possible states x1:T (we omit the known u1:T to ease the notation). Although conceptually clear, the computations
needed are typically challenging, and almost no cases exist that admit closed-form expressions for pðhjy1:TÞ.

For probabilistic learning, Monte Carlo methods have proven useful, as outlined in the accompanying paper [37]. The idea
underlying these Monte Carlo methods is to represent the distributions of interest, such as the posterior pðhjy1:TÞ, with sam-
ples. The samples can later be used to estimate functions of the parameters h, such as their mean, variance, etc., as well as
making predictions of future outputs yTþ1, etc. For state-space models, the particle filter is a tailored algorithm for handling
the unknown states xt , and in particular to compute an unbiased estimate z of the likelihood

pðy1:T jhÞ ¼
Z

pðy1:T ; x1:T jhÞdx1:T ; ð2Þ

which is a central object in probabilistic learning, see the accompanying paper [37] for a more thorough introduction (or, e.g.,
[36,24]). The peculiarity in the problem studied in this paper is the (relative) absence of measurement noise in (1) compared
to the process noise level. This seemingly innocent detail is, as we will detail in Section 2.2, a show-stopper for the standard
algorithms based on the particle filter, since the quality of the likelihood estimate z tends to be very poor if the model has
highly informative observations.

The problem with highly informative observations has a connection to the literature on approximate Bayesian computa-
tions (ABC, [3]), where some observations y are available, as well as a model (not necessarily a state-space model) with some
unknown parameters h. In ABC problems, however, the model is only capable of simulating new synthetic observations byðhÞ
and the likelihood pðyjhÞ cannot be evaluated. The ABC idea is to construct a distance metric between the real observations y
and the simulated synthetic observations byðhÞ, and take this distance (which becomes a function of y and h) as a substitute
for pðyjhÞ. The accuracy of the approximation is controlled by the metric with higher accuracy corresponding to more infor-
mative observations, providing a clear link to the present work.

We propose in this paper a novel algorithm for the purpose of learning h in (1). Our idea is to start the algorithm by
assuming that there is a substantial amount of measurement noise which mitigates the computational problems, and then
gradually decrease this artificial measurement noise variance simultaneously as the parameters h are learned. The assump-
tion of artificial measurement noise resembles the ABC methodology. The sequence of gradually decreasing measurement
noise variance can be seen as tempering, which we will combine with a sequential Monte Carlo (SMC) sampler [13] to obtain
a theoretically sound algorithm which generates samples from the posterior pðhjy1:TÞ.

In a sense, our proposed algorithm is a combination of the work by [11] on ABC for state-space models and the use of SMC
samplers for ABC by [14], resulting in a SMC2-like algorithm [9].

2. Background on particle filtering and tempering

In this section we will provide some background on particle filters, Markov chain Monte Carlo (MCMC) and related meth-
ods. For a more elaborate introduction, please refer to, e.g., [37,10,34]. We will in particular discuss why models on the form
(1) are problematic for most existing methods, and also introduce the notion of tempering.

2.1. Particle filtering, PMCMC and SMC2

The bootstrap particle filter was presented in the early 1990’s [20,17] as a solution to the state filtering problem (com-
puting pðxt jy1:tÞ) in nonlinear state-space models. The idea is to propagate a set of Nx Monte Carlo samples fxnt g along the
time dimension t ¼ 1;2; . . . ; T , and for each t the algorithm follows a 3-stage scheme with resampling (sampling ancestor

indices ant based on weights wn
t�1), propagation (sampling xnt from xa

n
t

t�1 using (1a)) and weighting (evaluate the ‘usefulness’
of xnt using (1b) and store it as the weightwn

t ). This algorithmwill be given as Algorithm 2, and a more elaborate introduction
can be found in [37]. The samples are often referred to as particles, and provide an empirical approximation

2 A. Svensson et al. /Mechanical Systems and Signal Processing xxx (2017) xxx–xxx

Please cite this article in press as: A. Svensson et al., Learning of state-space models with highly informative observations: A tempered
sequential Monte Carlo solution, Mech. Syst. Signal Process. (2017), https://doi.org/10.1016/j.ymssp.2017.09.016

https://doi.org/10.1016/j.ymssp.2017.09.016


Download English Version:

https://daneshyari.com/en/article/6954724

Download Persian Version:

https://daneshyari.com/article/6954724

Daneshyari.com

https://daneshyari.com/en/article/6954724
https://daneshyari.com/article/6954724
https://daneshyari.com

