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a b s t r a c t

Most of the currently used techniques for linear system identification are based on classical estimation
paradigms coming from mathematical statistics. In particular, maximum likelihood and prediction
error methods represent the mainstream approaches to identification of linear dynamic systems, with
a long history of theoretical and algorithmic contributions. Parallel to this, in the machine learning
community alternative techniques have been developed. Until recently, there has been little contact
between these two worlds. The first aim of this survey is to make accessible to the control community
the key mathematical tools and concepts as well as the computational aspects underpinning these
learning techniques. In particular, we focus on kernel-based regularization and its connections with
reproducing kernel Hilbert spaces and Bayesian estimation of Gaussian processes. The second aim is to
demonstrate that learning techniques tailored to the specific features of dynamic systemsmayoutperform
conventional parametric approaches for identification of stable linear systems.

© 2014 Elsevier Ltd. All rights reserved.

1. Preamble

System identification is about building mathematical models
of dynamic systems from observed input–output data. It is a well
established subfield of Automatic Control, withmore than 50 years
history of theoretical and algorithmic development as well as
software packages and industrial applications.
General aspects. For time-invariant linear dynamical systems the
output is obtained as a convolution between the input and the sys-
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tem’s impulse response. This means that system identification is
an example of an inverse problem: indeed, finding the impulse re-
sponse from observed data is a deconvolution problem. Such prob-
lems are quite ubiquitous and appear in biology, physics, and
engineeringwith applications e.g. inmedicine, geophysics, and im-
age restoration (Bertero, 1989; De Nicolao, Sparacino, & Cobelli,
1997; Hunt, 1970; Tarantola, 2005). The problem is non trivial as
convolution is a continuous operator, e.g. on the space of square
integrable functions, but its inverse may not exist or may be un-
bounded (Phillips, 1962).

The reconstruction of the continuous-time impulse response
is always an ill-posed problem since such a function cannot be
uniquely inferred from a finite set of observations. Also finite dis-
cretizations lead to an ill-conditioned problem,meaning that small
errors in the data can lead to large estimation errors. Starting
from the seminal works of Tikhonov and Phillips (Phillips, 1962;
Tikhonov & Arsenin, 1977), a number of regularization methods
have been proposed in the literature to solve the deconvolution
problem, e.g. truncated singular value decompositions (Hansen,
1987) and gradient-based techniques (Hanke, 1995; Nemirovskii,
1986; Yao, Rosasco, & Caponnetto, 2007). This means that
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regularization should be an important topic and area for system
identification.
Identification techniques. The most widespread approach to identi-
fication of dynamic systems relies on parametric prediction error
methods (PEMs), for which a large corpus of theoretical results is
available (Ljung, 1999; Söderström & Stoica, 1989). The statistical
properties of prediction error (and maximum likelihood) methods
are well understood under the assumption that the model class
is fixed. They show that such procedures are in some sense op-
timal, at least for large samples. However, within this parametric
paradigm, a key point is the selection of the most adequate model
structure. In the ‘‘classical, frequentist’’ framework, this is a ques-
tion of trade-off between bias and variance, and can be handled
by various model validation techniques. This is often carried out
by resorting to complexity measures, such as the Akaike’s crite-
rion (AIC) (Akaike, 1974) or cross validation (CV), but some inef-
ficiencies related to these classical approaches have been recently
pointed out (Chen, Ohlsson, & Ljung, 2012; Pillonetto, Chiuso, & De
Nicolao, 2011; Pillonetto & De Nicolao, 2010). In particular, it has
been shown that sample properties of PEM approaches, equipped
e.g. with AIC or CV, may be unsatisfactory when tested on exper-
imental data, departing sharply from the properties predicted by
standard (i.e. without model selection) statistical theory, which
suggests that PEM should be asymptotically efficient for Gaussian
innovations.

Parallel to this development in system identification, other
techniques have been developed in the machine learning com-
munity. Until very recently, there has been little contact between
these concepts and system identification.

Recent research has shown that the model selection problems
can be successfully faced by a different approach to system identi-
fication that leads to an interesting cross fertilization with the ma-
chine learning field (Pillonetto & De Nicolao, 2010). Rather than
postulating finite-dimensional hypothesis spaces, e.g. using ARX,
ARMAX or Laguerre models, the new paradigm formulates the
problem as function estimation possibly in an infinite-dimensional
space. In the context of linear system identification, the elements
of such space are all possible impulse responses. The intrinsical
ill-posedness of the problem is circumvented using regularization
methods that also admit a Bayesian interpretation (Rasmussen &
Williams, 2006). In particular, the impulse response is modeled as
a zero-mean Gaussian process. In this way, prior information is in-
troduced in the identification process just assigning a covariance,
named also kernel in the machine learning literature (Schölkopf &
Smola, 2001). In view of the increasing importance of these kernel
methods also in the general system identification scenario, the first
aim of this survey is to make accessible to the control community
some of the keymathematical tools and concepts underlying these
learning techniques, e.g. reproducing kernel Hilbert spaces (Aron-
szajn, 1950; Cucker & Smale, 2001; Saitoh, 1988), kernel meth-
ods and regularization networks (Evgeniou, Pontil, & Poggio, 2000;
Suykens, Gestel, Brabanter, De Moor, & Vandewalle, 2002; Vap-
nik, 1998), the representer theorem (Schölkopf, Herbrich, & Smola,
2001; Wahba, 1990) and the connection with the theory of Gaus-
sian processes (Hengland, 2007; Rasmussen & Williams, 2006). It
is also pointed out that a straight application of these techniques
in the control field is doomed to fail unless some key features of
the system identification problem are taken into account. First, as
already recalled, the relationship between the unknown function
and the measurements is not direct, as typically assumed in the
machine learning setting, but instead indirect, through the convo-
lution with the system input. This raises significant analogies with
the literature on inverse problems (Bertero, 1989; Tikhonov & Ar-
senin, 1977). Furthermore, in system identification it is essential
that the estimation process be informed on the stability of the im-
pulse response. In this regard, a recent major advance has been the

introduction of new kernels which include information on impulse
response exponential stability (Chen et al., 2012; Pillonetto & De
Nicolao, 2010). These kernels depend on some hyperparameters
which can be estimated from data e.g. using marginal likelihood
maximization. This procedure is interpretable as the counterpart
of model order selection in the classical PEM paradigm but, as it
will be shown in the survey, it turns out to be much more robust,
appearing to be the real reason of success of these new procedures.
Other research directions recently developed have been the justi-
fication of the new kernels in terms of Maximum Entropy argu-
ments (Pillonetto & De Nicolao, 2011), the analysis of these new
approaches in a classical deterministic framework leading to the
derivation of the optimal kernel (Chen et al., 2012), as well as the
extension of these new techniques to the estimation of optimal
predictors (Pillonetto et al., 2011).

Outline of the survey. The present surveywill dealwith thismeeting
between conventional system identification of linear models and
learning techniques. It is divided into three Parts with sections
which are relevant, but can be skipped without interrupting the
flow of the discussion, marked with a star ⋆.

Part I will describe the status in traditional parametric system
identification in discrete-time with an account of how the bias-
variance trade-off can be handled also by regularization techniques,
including their Bayesian interpretation.

Part II is an account of general function estimation – or function
learning – theory in a general and abstract setting. This includes
the role of RKHS theory for this problem.

Part III treats linear system identification,mainly in continuous-
time, as an application of learning the impulse response function
from observed data, leaning on general function estimation and its
adaptation to the specific properties of impulse responses of dy-
namic systems. Thiswill link back to the regularizations techniques
from the simplistic perspective in Part I. Considerations on compu-
tational issues are also included while some mathematical details
are gathered in the Appendix.

In conclusion, the scope of this work is twofold. Firstly, our aim
is to survey essential results in kernel methods for estimation, that
are mostly published outside the control audience, and hence not
so well known in this community. Secondly, we want to show that
these results have much to offer for estimation problems in the
control community, in particular for system identification.

Part I. Estimating system impulse responses in discrete
time

In this part, we study the problem of estimating system impulse
responses in discrete time.

2. ‘‘Classical’’ system identification

2.1. System identification

There is a very extensive literature on system identifica-
tion, with many text books, like Ljung (1999) and Pintelon and
Schoukens (2012a). Most of the techniques for system identifica-
tion have their origins in estimation paradigms from mathemati-
cal statistics, and classical methods like Maximum Likelihood (ML)
have been important elements in the area. In Part I the main in-
gredients of this ‘‘classical’’ view of system identification will be
reviewed. For convenience, we will only focus on the single in-
put–single output (SISO) linear time-invariant, stable and causal
systems. We will also set the stage for the ‘‘kernel methods’’ for
estimating the main characteristics of a system.
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