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a b s t r a c t

The theory of variational integration provides a systematic procedure to discretize the equations of
motion of a mechanical system, preserving key properties of the continuous time flow. The discrete-time
model obtained by variational integration theory inherits structural conditions which in general are not
guaranteed under general discretization procedures. We discuss a simple class of variational integrators
for linear second order mechanical systems and propose a constrained identification technique which
employs simple linear transformation formulas to recover the continuous time parameters of the system
from the discrete-time identified model. We test this approach on a simulated eight degrees of freedom
system and show that the new procedure leads to an accurate identification of the continuous-time
parameters of second-order mechanical systems starting from discrete measured data.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction and motivations

The identification of linear second order models of mechanical
systems has been the object of intensive research and of several
papers in the past decade (De Angelis, Lus, Betti, & Longman,
2002; Lus, De Angelis, Betti, & Longman, 2002, 2003). Of particular
interest are systems which can be described by a second order
vector model of the following form:

Mq̈ + Dq̇ + Kq = f (1.1)

where M and K , both symmetric positive definite matrices in
Rn×n, have the interpretation of generalized mass (or inertia) and
generalized stiffness coefficient matrices respectively, while D ∈

Rn×n,D = DT is a linear (viscous) damping coefficient which is
at least positive semidefinite. The generalized forces f acting on
the system can be expressed as a linear function of a vector of
independently assignable generalized input forces u of dimension
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m ≤ n; namely

f = Lu (1.2)

where the matrix L, which will be assumed to be known, describes
the physical locations atwhich the input forces u act on the system.
Without loss of generality itmay be assumed that L is of full column
rank; i.e. rank L = m.

For simplicity and for mathematical convenience we shall
assume that a full set of linear sensors is available to the
experimenter; i.e., that all n degrees of freedom are measured
via linear sensors. This is obviously equivalent to assume that
the measurement equation is y = q. The system (1.1) can
also be represented in state space form; for example, defining
x := [q, q̇]⊤, one gets

ẋ =


0 I

−M−1K −M−1D


x +


0

M−1L


u (1.3)

which should be coupledwith themeasurement (output) equation
y = [ I 0 ] x. Note that under our assumptions the system is
automatically controllable and observable and henceminimal. This
is a necessary condition for parameter identifiability. See Laub and
Arnold (1984) for a direct test of controllability/observability of
second order models of the type considered in this paper.

Now, in several areas of engineering, such as mechanical or
structural engineering, an accurate estimation of the parameters
(M, K , D ) of the physical continuous time model (1.1) is often
required. A typical example being the estimation of deformations
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at points which are not monitored or the estimation of proper
modes of vibration of a mechanical structure.

Mainstream system identification theory deals with discrete-
time data and discrete-time models and normally the recovery
of the continuous-time parameters involves a conversion step
from discrete to continuous time (the so-called indirect approach).
The problem of reconstructing a continuous-time model from
an identified discrete-time model has a long history and has
been discussed in several places, see e.g. Söderström (1991)
and the reference list in the more recent paper Mahata and Fu
(2007). The conversion step from discrete to continuous may
sometimes be cause of troubles. It is a commonly experienced
fact that for multivariable systems of moderate/large dimension,
accurate values of the continuous-time parameters may be hard
to recover from the estimated discrete-time system, no matter
how accurate the estimates of the latter may be. One reason of
this difficulty may be attributed to the ill-conditioning of the
discrete-to-continuous conversion, which involves, in the zero-(or
first-order)-hold (ZOH) discretizations,2 inverting the exponential
relation F = exp Ah, G =

 h
0 exp As ds B to recover the matrices

(A, B) of the continuous-time model from estimates (F ,G) of an
identified discrete time model

xk+1 = Fxk + Gfk, yk = Hxk + Jfk. (1.4)

The default option in the discrete-to-continuous (d2c) routine in
MATLAB is ZOH. It is well-known that this operation may turn
into an ill-conditioned problem since the recovery of matrix A
involves the computation of the logarithm of F which may be a
complex matrix or, may be undefined as requiring the inversion
of the exponential map in a region of the complex plane where it is
not invertible. We would like to point out that the common belief
that this problem should be solvable by choosing a high sampling
frequency may actually worsen the problem. Consider the trivial
case of a scalar discrete F subject to a perturbation δF . The relative
error incurred when computing A + δA :=

1
h log(F + δF) is

δA
A

=
1

log F
δF
F

a more complicated formula holding in the matrix case, see Dieci
and Papini (2000, Formula 2.3). Since for h → 0, F → I , the
condition number of computing A =

1
h log F tends to infinity

when h → 0. This means that at high sampling frequency, the
effect of unavoidable random errors on the estimates of F (and G)
could be largely amplified when computing A by the logarithmic
transformation. See Dieci and Papini (2000) and the references
therein.

A possible option in the Matlab d2c routine is the so-called
Tustin transform. Since this discretization scheme has superficial
similarities with the approach proposed in this paper and deserves
an accurate analysis, we shall postpone a detailed discussion of this
option to Section 3.

Now, since the problem we are discussing is a specific parame-
ter estimation problem, the continuous model structure obtained
from the discrete-time identified model should be easily trans-
formable into the form (1.1) or (1.3) in that particular basis. In gen-
eral however, an identified discrete model will just have a generic
structure (1.4) with full matrices (F , G, H, J) and need not have

2 The ZOH sampler transforms continuous-time into discrete-time by syn-
chronously sampling the output of the continuous system once the input signal is
approximated by a piecewise constant function on each sampling interval. There
are more refined schemes, such as the first-order-hold (FOH) which assumes in-
stead the input to be piecewise linear. The discussion which follows applies also to
FOH, modulo notational complications which we choose to avoid.

any of the structural properties of a mechanical system. In particu-
lar, the continuous state-space realization obtained by the inverse
of the ZOH or FOH discretizations does not lead to an input–output
relation of the special second-order form (1.1). This means that the
recovery of the physical parametersM, D, K may in general be ill-
defined or impossible. That this is not of purely academic interest is
witnessed by the interest in this problem in the recent mechanical
engineering literature, see e.g. De Angelis et al. (2002), Lus, De An-
gelis, and Betti (2003), Lus, De Angelis, Betti, Longman (2003) and
the references therein. Ideally, we would like to use discretization
schemes which preserve the second order input–output structure
of the type (1.1), which is a basic characteristic of linear models of
fully observed mechanical systems (Newton law).

In addition, besides the previous difficulties, since the inverse
discretization transform is generally non-linear it does introduce
bias in the estimates of the continuous-time parameters, even
when the estimates of the discrete-time parameters are unbiased
and accurate. For this reason a linear (or ‘‘approximately linear’’)
discrete-to-continuous conversion would be highly desirable.3

1.1. On continuous-time identification

An alternative approach could be to identify the continuous-
time parameters directly (the so-called direct approach). This
could be done in several ways. One may attempt to identify
the parameters of the model (1.1) or (1.3) from (discrete) noisy
observations directly, by using a continuous-time PEM method.
However continuous-time iterative optimization methods are
especially sensitive to the choice of good initial estimates of
the parameters, particularly when the data sampling frequency
may not be suitable for a reasonable numerical approximation of
derivatives and gradients. The sensitivity to initial estimates is a
serious difficulty especially for multivariable (multi input/multi
output) models like the mechanical systems we are dealing with,
where good quality initial parameter estimates may be hard to
obtain. The problem of getting reasonable initial continuous-time
parameter estimates seems indeed to be a non trivial one.

Correlation methods, say by replacing the differentiation
operatorwith the so-called delta operator (Feuer&Goodwin, 1996)
or by various approximations of the continuous derivative operator
have been proposed (Söderström, Fan, Carlsson, & Bigi, 1997).
The approach seems to be advantageous only if the underlying
continuous system is scalar autoregressive. The accuracy of the
approach depends on the particular approximation being used and
does not seem to be easy to assess, especially when the method
should be applied to multivariable continuous-time models of
moderate or high dimension. Other continuous-time identification
algorithms eventually end up to rely on logarithmic transforms,
like inverting the relation z = exp{sh} which turns out to be
equivalent to the logarithmic d2c transformation. For the reasons
given above, these methods are not always reliable. There is also
a quite popular approach based on filtering the continuous-time
data by a family of test functions (Heuberger, de Hoog, van denHof,
&Wahlberg, 2003; Ohta & Kawai, 2004), which may or may not be
orthonormal. This approach needs extensive numerical integration
for computing the inner products over a long period of time, since
in order to reach a reasonable accuracy the computation of many
inner products of the measured signal with a large number of test
functions is needed. In a sense each inner product plays eventually
the role of a single discrete-time sample value of the signal.

Unfortunately according to the current literature on con-
tinuous time identification, see e.g. Garnier and Wang (2008),
Sinha and Rao (1991) and the references therein, the existing

3 One may argue that the Euler discretization is a well known instance of linear
conversion map but unfortunately the Euler discretization is too primitive to be of
use in most situations.
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