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a b s t r a c t

In this paper,we consider a numerical European-style option pricingmethod under two regime-switching
underlying assets depending on the market regime. For a risk neutral market condition, we consider
regime-switching model with two assets using a Feynman–Kac type formula. And to solve the option
problemwith regime-switchingmodel, we apply an operator splittingmethod. Numerical examples show
the volatility smile and the volatility term structure under varying parameters on a two state regime
switching model.
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1. Introduction

The Black–Scholes (BS) formula for option pricing is widely
applied to the pricing of numerous European options; see Haug
(1997). The underlying securities of the Black–Scholes formula are
supposed to be geometric Brownian motions that contain pairs
of two parameters, the expected rate of return and the volatility.
Both parameters are assumed to be constants in the general
Black–Scholes model, and these assumptions are not applicable to
option pricing in real markets. To overcome the shortfall of the BS
model, the volatility smile and term structure are used to capture
the change in volatility in terms of the price and the maturity of a
security.

The regime-switching model is an alternative model to illus-
trate the stochastic volatility. Since stock parameters practically
are depended on the market mode that switches among a finite
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number of states, we naturally allow the key parameters of the un-
derlying assets to reflect a randommarket environment.

The regime-switching model is invoked to formulate such pa-
rameters that are governed by the random market mode. In 1989,
the regime-switching model was first introduced by Hamilton
(1989) to describe a regime-switching time series. In option pric-
ing, regime-switching model has been applied in various other
problems. Zhang (2001) used this model to calculate an optimal
selling rule and Yin and Zhang (1998) applied this in portfolioman-
agement. Also, Yin and Zhou (2003) studied a dynamic Markowitz
problem for a market consisting of one bank account and multiple
stocks.

In this study, we consider an efficient and accurate numerical
method of a regime-switching model for European options (Kim,
Jang, & Lee, 2008). Among several numerical methods for pricing
of optionswithmulti-underlying assets, the operator splitting (OS)
scheme will be used: see Duffy (2006) and Ikonen and Toivanen
(2004). In general, standard finite difference methods (FDM) do
not work well for discrete options due to non-smooth payoffs
or discontinuous derivatives at the exercise price. On the other
hand, the OS scheme does not result in problematic oscillations
due to the source term (Jeong & Kim, 2013). The main purpose
of this paper is to observe the volatility smile and term structure
of a regime-switching model by using an efficient and accurate
numerical method. This work is an extension of the earlier one-
dimensional study of Buffington and Elliott (2002).

This paper is organized as follows. In Section 2, we briefly in-
troduce the risk-neutral valuation method and regime-switching.
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In Section 3, we discuss the Feynman–Kac type formula that is sat-
isfied by the option valuation function. We describe the algorithm
of the OS method for the formula at the end of this section. In Sec-
tion 4, we perform convergence test and comparison study of ADI
and OS methods. The volatility smile and term structure with a
simple regime-switching model are reported in Section 5. In this
section, we propose an algorithm for finding the implied volatility
and by using this algorithm,we carry out several numerical param-
eter tests. We conclude this study in Section 6.

2. Risk neutral pricing

Standard research in derivative pricing follows the idea that
the expected rate of return of all securities has the same risk-
free interest rate in an appropriate probability space. We call the
probability space the risk-neutral world, and the discount asset
price is a martingale in this world.

Let (Ω, F , P) denote the probability space and {α(t)} denote
a continuous-time Markov chain with state space M = {1, 2,
. . . ,m}. In a regime-switchingmodel, {α(t)} represents themarket
regime that determines the rate of return and volatility. Then, for
example, the price of a stock X(t) at time t is governed by:

dX(t) = X(t) [µ(α(t))dt + σ(α(t))dw(t)] ,
for 0 ≤ t ≤ T , X(0) = X0.

Let Q = (qij)m×m be the generator of α(t) with qij ≥ 0 for i ≠ j
and

m
j≠i qij = −qii for each i ∈ M. For any function f on M, we

denote Qf (·)(i) :=
m

j=1 qijf (j).
In this paper, one of our objectives is to price European style

options under regime-switchingmulti-underlying assets. Consider
Xk(t) as the price of stock k at time t with

dXk(t) = Xk(t) [µk(α(t))dt + σk(α(t))dwk(t)] ,
for 0 ≤ t ≤ T , k = 1, 2, . . . , d, and Xk(0) = Xk0, (1)

where µk(i) and σk(i) respectively represent the expected rate of
return for Xk and the volatility of the stock price Xk at regime
i ∈ M, and wk(·) denotes the standard Brownian motion. The
Wiener processes are correlated by

⟨dwk, dwl⟩ = ρkldt, for ρkl ∈ [−1, 1].

In order to introduce derivative pricing in the risk neutral market,
we also discuss themartingale measure characterized in Lemma 1.
Assume that X0, α(·), and wk(·) are mutually independent, and
σ 2
k (i) > 0 for all i ∈ M. Let Ft denote the sigma field generated

by {(α(s), wk(s)) : 0 ≤ s ≤ t}, and let r > 0 denote the risk-free
rate. For 0 ≤ t ≤ T , let

Zt := exp
 t

0
βk(s)dwk(s) −

1
2

 t

0
β2
k (s)ds


,

where

βk(s) :=
r − µk(α(s))

σk(α(s))
.

Then, in lieu of Ito’s rule,
dZt
Zt

= βk(t)dwk(t)

and Zt is a local martingale with

E[Zt ] = 1, 0 ≤ t ≤ T .

We define an equivalent measureP with the following

dP
dP

= ZT .

Therefore Lemma 1 is a generalized Girsanov’s theorem for
Markov-modulated processes.

Lemma 1. (1) Let wk(t) := wk(t) −
 t
0 βk(s) ds(k = 1 : d). Then,wk(t) is aP-Brownian motion.

(2) X0, α(·), and wk(·) are mutually independent under P.
(3) Let X(t) := (X1(t), X2(t), . . . , Xd(t)), c ≤ t, and σXk(i) :=

the volatility of stock Xk at regime i. Dynkin’s formula holds: for any
smooth function F (t,X, i), we have

F (t,X(t), α(t)) = F (c,X(c), α(c))

+

 t

c
AF (s,X(s), α(s))ds + M(t) − M(c),

where M(·) is aP-martingale and A is a generator given by

AF =
∂

∂t
F (t,X, i) +

d
k=1

rXk
∂

∂Xk
F (t,X, i)

+
1
2

d
k=1

d
l=1

ρkl(i)σXk(i)σXl(i)XkXl
∂2

∂Xk∂Xl
F (t,X, i)

+QF (t,X, ·)(i),

where ρkk = 1 for 1 ≤ k ≤ d.

Proof. See Chapter 14 in Yao, Zhang, and Zhou (2006). �

From Lemma 1 and this point of view of Fouque, Papanicolaou,
and Sircar (2000) and Hull (2000), (Ω, F , {Ft},P) defines a risk-
neutral world. And e−rtX(t) is aP-martingale.

3. A numerical approach with OS methods

In this paper, we consider European style option pricing under
two regime-switching underlying assets X1(t) and X2(t). Let x :=

X1(t), y := X2(t), and U(x, y, t, i) be the values of a European style
call option with two underlying assets with regime i for i = 1, 2.
Using a Feynman–Kac formula, a partial difference equation with
respect toU(x, y, t) = (u(x, y, t), v(x, y, t))T is derived as follows:

∂U
∂t

+ rx
∂U
∂x

+ ry
∂U
∂y

− rU +
1
2
(σxx)2

∂2U
∂x2

+
1
2
(σyy)2

∂2U
∂y2

+ ρxyσxσyxy
∂2U
∂x∂y

+ QU = 0,

where Q =


−λu λu

λv
−λv


and λu, λv represent jumping rates for u

and v, respectively.
Then, by each component of U, we have the following system:

∂u
∂t

+ rux
∂u
∂x

+ ruy
∂u
∂y

− ruu

+
1
2
(σ u

x x)
2 ∂2u
∂x2

+
1
2
(σ u

y y)
2 ∂2u
∂y2

+ ρu
xyσ

u
x σ u

y xy
∂2u
∂x∂y

+ λu(v − u) = 0, (2)

∂v

∂t
+ rvx

∂v

∂x
+ rvy

∂v

∂y
− rvv

+
1
2
(σ v

x x)
2 ∂2v

∂x2
+

1
2
(σ v

y y)
2 ∂2v

∂y2

+ ρv
xyσ

v
x σ v

y xy
∂2v

∂x∂y
+ λv(u − v) = 0. (3)

The terminal conditions u(x, y, T ) = v(x, y, T ) are given by
Λ(x, y).
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