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A B S T R A C T

Complexity pursuit (CP) has recently been proposed as an elegant and simple solution to blindly
(i.e. without measuring the inputs) separate the modal contributions in the vibration responses
of a structure. This potentially finds considerable interest in operational modal analysis and
related applications. This paper analyses the theoretical ins and outs of the method. It also
revises its physical interpretation in the modal analysis context. CP is found to separate
components which are the least dispersive (i.e. invariant under linear filtering), a property that
well characterizes the modal responses of lightly damped systems. However, it is also found to
suffer from the same limitations as other blind source separation methods used in the state-of-
the-art, namely the difficulty to separate strongly coupled modes and to identify complex mode
shapes. Finally a generalization of CP is proposed which intends to widen its applicability.
Interestingly, the generalized CreP happens to include the well-known SOBI algorithm as a
particular case.

1. Introduction

Complexity Pursuit (CP), a new blind source separation (BSS) technique, was recently introduced in [1–3] and demonstrated to
decompose the vibration responses of a structure into individual modal contributions. Such a technique is of particular interest
within the context of operational modal analysis (OMA) due to its ability to blindly (i.e. without measuring the inputs) decouple a
multiple-degree-of-freedom system into a set of single-degree-of-freedom components, as demonstrated in precursory works [5–
8,10–13] and in later developments [14]. In particular, it can greatly simplify the subsequent identification task required for
extracting the modal information from the system responses: the global modal parameters (natural frequencies and damping ratios)
can easily be identified by using single-degree-of-freedom methods and the mode shape estimated from the inverse of the separation
matrix. The BSS technique of [1] is an adaptation of the complexity pursuit (CP) principle initially formulated in [4] in a statistical
learning context (note that [15] independently formulated a BSS method based on a similar idea). Basically, it consists in finding a
modal filter intended to extracting an individual modal contribution by minimizing the energy ratio between two filtered versions of
the output signals. Namely, using the notations of [1], let the column vector
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denotes the observed vibration responses of a structure at time produced by a mixture of modal coordinates weighted by mode
shapes , (columns of the modal matrix ). The objective is to find a modal filter (a raw vector) such that

returns an estimate of up to a scaling factor, from which global modal parameters can be subsequently recovered, on the one
hand. One the other hand, the inverse of matrix made of the rows , is an estimate of the modal matrix that contains
information on the mode shapes. The principle of CP is to estimate such as to minimize the ratio

where stands for the time average operator and superscript symbolically represents two different filtered versions of the
same signals. In its original formulation, (resp. ) is the residual between the actual signals and a long-term predictor

(resp. short –term predictor )

[1–3] used and by default.
As stated in [1], the rationale beyond criterion (3) is to seek a separation vector that yields the “least complexity and thus

approaches the (simplest) source signal, where the complexity is robustly measured by temporal predictability”. Using the authors’
words, CP is “computational efficient, user-friendly, and automatic, requiring little expertise interactions for implementations”.
Indeed, the minimization of criterion (3) with respect to simply amounts to computing the generalized eigenvectors of the cross-
correlation matrices and (see Section 3.1).

A first objective of this paper is to provide the theoretical foundation and physical interpretation of the CP that are lacking in [1].
In view of its potential importance to OMA, it is imperative to establish at the onset whether it is capable of separating modal
contributions in the general scenario and, if not, to delineate its limits. In particular, the question arises as whether it can resolve
highly coupled modes (e.g. closely spaced frequencies and/or strongly damped modes) and complex mode shapes, two
configurations which are still challenging to cutting-edge BSS techniques [14]. Second, it is also compulsory to compare its
performance against SOBI [17], a state-of-the-art BSS technique used in OMA which has been standing as a point of reference since
a few years [7,8,10,14].

A second objective of the paper is to propose a generalization of CP that is shown to apply more widely and provides perspective
for the proposal of new BSS algorithms.

The main results of this paper are summarized hereafter:

1) The solutions of CP, as formulated by Eqs. (2)–(4), are pure sines. Strictly speaking, this generally precludes the exact recovery of
vibration modes as soon as damping is present in the system.

2) However, very good separation of lightly damped modes is to be expected provided the built-in filters of CP are smooth enough to
be considered as approximately constant across the mode bandwidths.

3) The original formulation of CP in terms of short and long-term predictors (Eq. (4)) can be generalized to the consideration of any
type of filters, provided they are smooth enough in the sense of point (2). This makes obsolete the interpretation of CP as seeking
for the least complex components that are “maximally predictable”.

4) The physical interpretation of the CP is to seek vibration components that remain invariant under arbitrary (linear) filtering. In
terms of waveforms, these are components which are as least dispersive as possible, that is nearly invariant under linear filtering.
Non-dispersion is an intrinsic property of pure sines, yet it can be approached remarkably well by lightly damped modes whose
modal coordinates resemble slowly modulated sinusoids. Least complexity in CP is therefore to be measured by “dispersion”
rather than by “predictability”.

5) CP is generally unable to recover complex mode shapes (e.g. in the case of non-proportional damping) since the generalized
eigenvectors of square real symmetric matrices and are real-valued, unless specific pre-processing is
used as suggested in [10].

6) CP presents a strong analogy with AMUSE, the two time-lag version of SOBI [18]. Some particular choices of the built-in filters
can make it identical to AMUSE.

7) Simulations show that CP is not superior to SOBI in the general case and that it suffers from the same difficulty to separate
strongly coupled modes and complex mode shapes.

8) A generalization of the original CP algorithm is proposed that involves an arbitrary number of filters. This involves an approximate
joint diagonalization of a set of cross-correlation matrices which is likely to improve the performance of the plain-vanilla CP
method. The generalization includes SOBI as a particular case.

9) Several sets of filters are tested on simulated and real data in order to demonstrate how to optimize the separation of vibration
components. One advantage of the generalized CP is to provide a versatile algorithm that is intended to shortcut this step.

J. Antoni et al. Mechanical Systems and Signal Processing 85 (2017) 773–788

774



Download English Version:

https://daneshyari.com/en/article/6954870

Download Persian Version:

https://daneshyari.com/article/6954870

Daneshyari.com

https://daneshyari.com/en/article/6954870
https://daneshyari.com/article/6954870
https://daneshyari.com

