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a b s t r a c t

Stabilization of switched systems composed fully of unstable subsystems is one of the most challenging
problems in the field of switched systems. In this brief paper, a sufficient condition ensuring the
asymptotic stability of switched continuous-time systems with all modes unstable is proposed. The main
idea is to exploit the stabilization property of switching behaviors to compensate the state divergence
made by unstable modes. Then, by using a discretized Lyapunov function approach, a computable
sufficient condition for switched linear systems is proposed in the framework of dwell time; it is shown
that the time intervals between two successive switching instants are required to be confined by a pair
of upper and lower bounds to guarantee the asymptotic stability. Based on derived results, an algorithm
is proposed to compute the stability region of admissible dwell time. A numerical example is proposed to
illustrate our approach.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The stability issue is the main concern in the field of switched
systems, which have been extensively studied in the literature
(Branicky, 1998; Daafouz, Riedinger, & Iung, 2002; Decarlo,
Branicky, Pettersson, & Lennartson, 2000; Geromel & Colaneri,
2006; Lee & Dullerud, 2007; Liberzon, 2003; Lin & Antsaklis, 2009;
Margaliot, 2006; Shorten, Wirth, Mason, Wulff, & King, 2007; Sun
& Ge, 2005). Most of the reported results are confined to the case
where there exist stable subsystems within switched systems.
In the early work, the research results mainly focused on the
switched systems composed fully of stable modes (Allerhand &
Shaked, 2011; Chesi, Colaneri, Geromel, Middleton, & Shorten,
2010; Hespanha, Liberzon, & Morse, 1999; Morse, 1996). In recent
years, some advances have been reached to deal with the case
when there exist some unstable modes such as Xiang and Xiang
(2009), Xiang and Xiao (2012), Xiang, Xiao, and Iqbal (2012), Zhai,
Hu, Yasuda, and Michel (2000, 2001, 2002) and Zhang and Shi
(2009, 2010), but it should be noted that these results also require
the existence of (at least one) stable subsystem to ensure the
stability of the whole switched system. The main idea of these
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results is to activate the stablemodes for sufficiently long to absorb
the state divergence made by unstable modes. But, when all the
subsystems are unstable, this promising idea obviously fails, since
there exists no stable period to compensate the state divergence
effect.

As is well known, even if all subsystems are unstable, one may
carefully switch between unstable modes to make the switched
system asymptotically stable, and how to design appropriate
switching laws to stabilize the switched system composed fully
of unstable subsystems is one of the most interesting and serious
challenges for switched systems (Decarlo et al., 2000; Liberzon,
2003; Lin & Antsaklis, 2009; Sun & Ge, 2005). This problem has
been extensively studied for years, e.g. Li, Wen, and Soh (2001),
Margaliot and Langholz (2003), Pettersson (2003), Pettersson and
Lennartson (2001), Wicks, Peleties, and DeCarlo (1998), most of
them resort to state-dependent switching strategies such as the
min-projection strategy (Pettersson & Lennartson, 2001), largest
region function strategy (Pettersson, 2003), etc., but very few
results focus on the time-dependent switching law particularly
concerned with dwell time, which motivates the present study.
Since the previous idea based on the presence of a stable subsystem
is not applicable for the case with all subsystems unstable, we
have to find another way to establish stability. On the other hand,
since an appropriate switching law can stabilize the system, even
though all subsystems are unstable, this implies that switching
behaviors can also contain a good characteristic of stabilization in
some circumstances, e.g. see the examples in Branicky (1998) and
Sun and Ge (2005).
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For most of the previous results, the switching behavior has
been viewed as a bad factor only destroying stability, such as
the famous (average) dwell time technique (Hespanha et al.,
1999; Morse, 1996). However, since an appropriate switching
law can stabilize the system, it implies switching behaviors
can also contain a good characteristic of stabilization in some
circumstances. In this brief paper, when all modes are unstable, a
sufficient condition ensuring the switched system asymptotically
stable is proposed. Then, in order to derive computable ways to
characterize the stabilization property of switching behavior and
cover the results in the familiar conception called dwell time, the
discretized Lyapunov function technique (Gu, Kharitonov, & Chen,
2003) is applied to the linear case. It is interesting to see that the
time interval between two successive switching instants should
be confined by a pair of upper and lower bounds to guarantee
the asymptotic stability, which can be viewed as an extension of
Allerhand and Shaked (2011), from the case composed of stable
subsystems to the case fully composed of unstable subsystems.
Finally, an algorithm is proposed to compute the admissible upper
and lower bounds and determine the stability region for the dwell
time.

This paper is organized as follows: Some preliminaries are
introduced in Section 2. The stability analysis for a switched
system with all subsystems unstable is presented in Section 3,
and the main contributions, the computable condition for the
switched linear system and computation on the stability region
for the admissible dwell time are presented in Section 4. Then, a
numerical example is provided in Section 5. Conclusions are given
in Section 6.

2. Preliminaries

Let R denote the field of real numbers, R≥0 stand for non-
negative real numbers, and Rn be the n-dimensional real vector
space. |·| stands for the Euclidean norm. ClassK is a class of strictly
increasing and continuous functions [0, ∞) → [0, ∞) which is
zero at zero. Class K∞ denotes the subset of K consisting of all
those functions that are unbounded. The notation P > 0 (P ≥ 0)
means P is real symmetric and positive definite (semi-positive def-
inite). I stands for the identity matrix with appropriate dimension.

This paper is devoted to the study of switched nonlinear sys-
tems in the form of
ẋ(t) = fσ(t)(x(t)) (1)
where x(t) ∈ X ∈ Rn is the state vector. Define index set M :=

{1, 2, . . . ,N}, where N is the number of modes. σ(t) : [0, ∞) →

M denotes the switching function, which is assumed to be a piece-
wise constant function continuous from the right. fi : Rn

→ Rn

are smooth functions with fi(0) = 0, ∀i ∈ M, without loss of gen-
erality, the origin is not a stable (attractive) equilibrium for any
modes i ∈ M. The switching instants are expressed by a sequence
S := {t0, t1, t2, . . . , tn, . . .}where t0 denotes the initial time and tn
denotes the nth switching instant. The length between successive
switching instants is denoted the dwell time τn = tn+1 − tn, n =

0, 1, 2, . . . . In this work, we always assume that (1) is forward
complete meaning for each x0 ∈ X ∈ Rn there exists a unique tra-
jectory x(t; x0) for (1) satisfying x(t0) = x0, and we only consider
non-zeno switchings (i.e., switching occurs finite times in a finite
time interval). With respect to switching law σ(t), the following
stability notions are given.

Definition 1. Switched system (1) with switching law σ(t) is said
to be uniformly stable (US) with respect to σ(t) if for ∀ε > 0,
∃δ(ε) > 0 such that |x(t)| < ε, ∀t ∈ [0, ∞) whenever |x(0)| < δ.
When for ∀δ > 0 we have |x(t)| < ε, ∀t ∈ [0, ∞) then system
(1) is globally uniformly stable(GUS) with respect to σ(t). Further-
more if system (1) is GUS and satisfies limt→∞ x(t) = 0, switched
system (1) is globally uniformly asymptotically stable (GUAS) with
respect to σ(t).

The objective of this work is to propose a sufficient condition
that guarantees the switched system (1) is GUAS with respect
to switching law σ(t) when all modes of (1) are unstable.
Furthermore, particularly concernedwith the linear case of system
(1), the set of admissible switching laws that can stabilize the
switched system will be ascertained in the framework of dwell
time.

3. Stability analysis

It has beenwell recognized that themultiple Lyapunov function
(MLF) Vi(t), i ∈ M is a popular stability analysis tool for switched
systems, especially under dwell time constrained switching (Hes-
panha et al., 1999; Morse, 1996). At each switching instant tn from
mode i to j, the switching always causes a bounded increment of
Vi(t) which is described by Vj(tn) < µVi(tn), i ≠ j, ∀i, j ∈ M,
where µ > 1. When unstable subsystems are involved, a class of
Lyapunov functions Vi(t) are allowed to increase with bounded in-
crease rate as LfiVi(t) < ηVi(t), where η > 0 as unstable modes
work. Then, both increment of Vi(t) caused by activation of unsta-
blemodes and occurrence of switchingwill be compensated by the
decrement produced by stable subsystems with a decrease rate of
LfiVi(t) < −λVi(t), where λ > 0 (Xiang & Xiang, 2009; Xiang &
Xiao, 2012; Xiang et al., 2012; Zhai et al., 2000, 2001, 2002; Zhang
& Shi, 2009, 2010).

The above idea requires that there exists at least one stable sub-
system satisfying LfiVi(t) < −λVi(t), λ > 0 to compensate the
increment of Vi(t). But, this promising idea is obviously not ap-
plicable when all subsystems are unstable, i.e., LfiVi(t) < ηVi(t),
η > 0, ∀i ∈ M, since there exists no stable mode to be activated
to compensate the increment of Lyapunov function. In this brief pa-
per, we turn to the idea that increment of the Lyapunov function
is compensated by switching behavior. Before presenting themain
results, some useful functions are introduced in advance. Suppose
there exists a set of continuous non-negative functions Vi : R≥0 ×

Rn
→ R≥0, α1, α2 ∈ K∞, and a scalar η > 0 that satisfies

α1(|x|) ≤ Vi(t, x) ≤ α2(|x|), ∀i ∈ M (2)
LfiVi(t) ≤ ηVi(t), ∀i ∈ M. (3)

Since each subsystem is unstable, we cannot find Lyapunov func-
tions which are monotonically decreasing for eachmode. Thus, we
have to resort to Lyapunov functions allowed to increase. Formu-
lations (2) and (3) cover various divergences of unstable modes,
e.g. see Xiang and Xiang (2009), Zhai et al. (2000, 2001, 2002) and
Zhang and Shi (2009, 2010). Particularly by inequality (3), this im-
plies the value of Vi(t) may increase with a bounded rate η > 0 as
each unstable mode is activated. Finally, the activated mode indi-
cation functions θi(·) : [0, ∞) → {0, 1} are defined as

θi(t) =


1, if σ(t) = i
0, otherwise. (4)

And we define notations Vi(t−n ) = limt→t−n
Vi(t), Vi(t+n ) =

limt→t+n
Vi(t). Now, we are ready to propose the first result in this

paper.

Theorem 1. Consider switched system (1) given a switching se-
quence S := {t0, t1, t2, . . . , tn, . . .} generated by σ(t). If there exists
a set of continuous non-negative functions Vi : R≥0 × Rn

→ R≥0
satisfying (2) and (3), and a constant 0 < µ < 1 such that

Vj(t+n ) ≤ µVi(t−n ), i ≠ j, ∀i, j ∈ M (5)

lnµ + ητn < 0, ∀n = 0, 1, 2, . . . (6)

where τn = tn+1 − tn, n = 0, 1, 2, . . . , then, switched system (1) is
GUAS with respect to switching law σ(t).
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