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a b s t r a c t

In this work we propose a distributed algorithm to solve the discrete-time average consensus problem on
strongly connected weighted digraphs (SCWDs). The key idea is to couple the computation of the average
with the estimation of the left eigenvector associated with the zero eigenvalue of the Laplacian matrix
according to the protocol described in Qu et al. (2012). The major contribution is the removal of the
requirement of the knowledge of the out-neighborhood of an agent, thus paving the way for a simple
implementation based on a pure broadcast-based communication scheme.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades, multi-agent systems have gained an in-
creasing interest from the control theory community. Applications
range from transportation to environmental monitoring (see Oh,
Schenato, Chen, & Sastry, 2007). Distributed algorithms to esti-
mate the status of the system are essential in this context, as they
can help the agents modify their behavior in order to improve the
global response (Gasparri, Fiorini, Di Rocco, & Panzieri, 2012; Ren
& Beard, 2007).

Within several of the works related to this topic, the commu-
nication among agents is modeled using an undirected communi-
cation graph (see Mesbahi & Egerstedt, 2010 and the references
therein). This is founded on the assumptions that the communi-
cation is isotropic, i.e., the employed antenna radiates its power
uniformly in all directions and that its range is the same for all
the agents in the network. Therefore, if an agent can communicate
with another one, the opposite is possible as well. However, this
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assumption is not always realistic in a real world scenario due, for
example, to environmental effects or the radiation pattern of the
agents (Luthy, Grant, & Henderson, 2007).

In this work, we consider a more general scenario where
the communication among the agents is modeled as a directed
graph. In particular, two different communication schemes can
be considered, that is point-to-point or broadcast. We refer to
point-to-point as a communication mechanism where an agent
(sender) transmits a specific message to another agent (receiver),
picking out exactly that agent among all of his neighbors. Note
that this communication scheme requires the sender to know the
neighbors it is going to send the messages to, i.e., each agent
must know its out-neighborhood. In contrast, we refer to broadcast
as a communication mechanism where an agent (sender) can
simply transmit a message which will be received by any other
agent (receivers) within its range of transmission. In our opinion,
this latter communication mechanism represents a better choice
since it can be more easily implemented and provides a higher
robustness to the system.

Our contribution is a novel distributed algorithm to compute
the average consensus over any strongly connected weighted di-
graph, which can be run concurrently with the estimation proce-
dure described in Qu, Li, and Lewis (2012) for the computation
of the left eigenvector associated with the zero eigenvalue of the
Laplacianmatrix and forwhich agents are not required to be aware
of their out-neighborhood. To the best of our knowledge, this work
introduces the first approach suitable for an implementation based
on a pure broadcast communication scheme.
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2. Related works

In this section we review the major contributions available at
the state of the art concerning the average consensus problem on
digraphs.

In Dominguez-Garcia and Hadjicostis (2011), a doubly stochas-
tic weight matrix is computed by an iterative procedure that ad-
justs the outgoing weights of each node. Notably, the fact that the
columns of the weight matrix sum to one at each step, guarantees
that the average consensus can be performed in parallel with re-
spect to the convergence of the weight matrix to a doubly stochas-
tic form.

In Cai and Ishii (2012), the average consensus over a directed
network topology is addressed. The proposed algorithms require
an augmentation of the variables of each agent adding a ‘‘surplus’’
variable to be sent to the different out-neighbors, thus requiring
the knowledge of the out-neighborhood.

In Atrianfar and Haeri (2012), the average consensus problem
is addressed both in the continuous time and in the discrete time
under the assumption of switching network topology. However,
the discrete time consensus algorithm requires the adjacency
matrix to be doubly stochastic.

In Hadjicostis and Charalambous (2013), the discrete-time
average consensus problem in the presence of bounded delays
in the communication links and changing interconnections is
addressed. The proposed ratio-consensus protocol requires that
each agent is aware of the number of its out-neighborhood.

In Dominguez-Garcia and Hadjicostis (2013), the authors
present a class of distributed iterative algorithms to asymptotically
scale a primitive column stochastic matrix to a double stochastic
and demonstrate the application of these algorithms to the average
consensus problem. In particular, each node is in charge of
assigning weights on its outgoing edges based on the weights on
its incoming edges. Thus, the knowledge of the out-neighborhood
is required.

Kempe, Dobra, and Gehrke (2003) propose a gossip-based push-
sum protocol to compute the average based on the assignment
of the weights of the out-going neighbors such that their sum
is unitary or, in other terms, the knowledge of each agent’s out-
degree is required.

Olshevsky and Tsitsiklis (2009) present two different strategies
to compute the average when the graph is not balanced. The first
one requires the exact knowledge of the left eigenvector whereas
the second one assumes bidirectional communications, i.e., an
undirected graph. Compared to these algorithms our approach
can be run on any strongly connected digraph without any prior
knowledge of its left eigenvector.

Consensus in time-varying digraphs is analyzed in Hendrickx
and Tsitsiklis (2013) and Touri (2012), giving conditions on the
sequence of graphs to ensure convergence to aweighted average of
the initial conditions. However, in order to reach the exact average,
the sequence ofmatrices needs to be doubly stochastic or balanced.

Eventually, in Chen, Tron, Terzis, and Vidal (2010) an approach
to solve the average consensus on networks with random packet
losses is presented. In contrast to our approach, this work requires
the agents to send an additional variable keeping track of the
changes in the state variables caused by the neighbors influence.
However, the assumption on the links failure probabilities implies
the existence of bidirectional communications.

3. Preliminaries

Let us consider a set of n agentswhose communication network
is described by a digraph G(V, E) where V = {1, . . . , n} is the set
of nodes and E ⊆ V × V is the set of directed edges, i.e., ordered
pairs of nodes. Let us define the weighted adjacency matrix A(G) ∈
Rn×n as follows: Aij(G) > 0 if (j, i) ∈ E, Aij(G) = 0 otherwise.

Note that Aij(G) > 0 if agent i can receive data from agent j. It
is worthwhile to point out that the previously defined adjacency

matrix is based on the incoming edges of each node. It is assumed
that no self-loops exist in the network, i.e., (i, i) ∉ E . The in-degree
and the out-degree of a node k are given by din(k) =


j Akj(G) and

dout(k) =


j Ajk(G), respectively. The Laplacian matrix is defined
as L(G) = D(G)−A(G), with D(G) the diagonal in-degree matrix
defined as D(G) =


din(1), . . . , din(n)

T
. For the sake of readabil-

ity, the dependency on the graphGwill be omitted in the rest of the
paper. Let us recall that the Laplacian matrix is a non-symmetric
weakly diagonal dominant matrix. It has a zero structural eigen-
value for which the corresponding right eigenvector is the vector
of ones of appropriate size, i.e., L1 = 0.

Let the following assumptions be satisfied throughout the rest
of the paper:

A1 A unique identifier is associated with each agent i of the
network, e.g., the MAC address.

A2 Each agent sends n variables.
A3 Each agent does not know the number of agents receiving its

information (i.e., its out degree).
A4 The network topology of the considered multi-agent system is

described by a static SCWD.

In A1, we assume that each agent can distinguish the information
coming from the other agents according to the identifier of the
sender. In A2, it is assumed that each agent has enough storage size
for the values coming from its in-neighbors. Therefore, the number
of agents belonging to the network is known by each agent. In
A3, it is stated that each agent cannot count the number of its
out-neighbors. Eventually, in A4 we assume that the information
produced by one node is propagated within the network.

4. Decentralized estimation of the left eigenvector

In this section, the distributed procedure for the estimation of
the left eigenvector associated with the zero structural eigenvalue
of the Laplacian matrix encoding an SCWD proposed in Qu et al.
(2012) is briefly reviewed.

Let us consider the Perron matrix C defined as: C = I − β L
with 0 < β < 1

Ψ
and Ψ = maxi{


j≠i Aij} and let agent i have a

variable δi(k) = [δi1(k) · · · δin(k)]T with initial values δij(0) = 1
if i = j, 0 otherwise. At each iteration, the agents update their
variables as follows:

δij(k+ 1) =


p∈Ni∪i

Cipδpj(k), (1)

with Ni = {j ∈ V : (j, i) ∈ E} the in-neighborhood of agent i. Note
that, update rule (1) can be put in vectorial form as: ∆(k + 1) =
C ∆(k), with ∆(k) = [δ1(k), . . . , δn(k)]T . Noting that ∆(0) = I, it
is easy to see that at iteration k, the variable δi(k) contains exactly
the value of the ith row of the matrix Ck.

Let us denote by λCi and λLi , the ith eigenvalue of the Perron
matrix C and of the Laplacian matrix L, respectively, for which
holds: λCi = 1− β λLi . It follows that the two matrices also share
the same set of eigenvectors. In particular for the eigenvalue of
maximum modulus of the Perron matrix C, namely λC1 = 1, to
which corresponds the zero eigenvalue of the Laplacian matrix L,
namely λL1 = 0 we have that C 1 = λC11 and wT C = λC1w

T ,
with wT the left eigenvector associated with λC1 and λL1 .

From the Perron–Frobenius theorem it follows that if the graph
is strongly connected by applying the update rule given in (1), then
limk→∞∆(k) = 1 wT

wT 1 or, in other terms, δi(k) will tend to the
normalized left eigenvectorw of the Laplacianmatrix encoding the
digraph.
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