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a b s t r a c t

A new algorithm is presented to solve the frequency isolation problem for vibrational
systems with no damping: given an undamped mass-spring system with resonant
eigenvalues, the system must be re-designed, finding some close-by non-resonant system
at a reasonable cost. Our approach relies on modifying masses and stiffnesses along
directions in parameter space which produce a maximal variation in the resonant
eigenvalues, provided the non-resonant ones do not undergo large variations. The algo-
rithm is derived from first principles, implemented, and numerically tested. The numer-
ical experiments show that the new algorithms are considerably faster and more robust
than previous algorithms solving the same problem.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known [13] that whenever the natural frequencies of a vibrating structure are close to the frequencies of some
external force, these vibrations may be amplified to the point of becoming dangerous. This is the so-called phenomenon of
resonance. The external forces may be, for instance, those produced by the waves affecting an off-shore oil platform [1,
p. 146], an earthquake acting on a building [16,p. xv] or, maybe the most notorious example recently, the steps of pedes-
trians walking on the London Millenium Bridge [18, p. 235].

To model resonance in mathematical terms, some interval on the real line is typically identified as the resonance band,
i.e., the region which should be free of natural frequencies in order to guarantee non-resonance. One example of this is the
earthquake band prescribed by the California State Building Department: in order to minimize damage, the natural fre-
quencies of any new building constructed in California must be outside that band [16, p. xv].

In this paper we propose new algorithms for a frequency isolation problem, which occurs whenever an initial design for a
vibrational structure has some of its natural frequencies within the resonance band. In order to avoid resonance, the system
must be re-designed in such a way that all new natural frequencies lie outside the resonance band, and this should be done
in such a way that the impact (or the cost) of re-design is small, i.e., the new non-resonant structure is close in some sense to
the initial one. In our case we focus on undamped mass-spring systems

Mx
00 þKx¼ FðtÞ; ð1Þ
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which appear frequently in structural engineering problems. The unknown x¼ xðtÞ is an n-vector, and the n�n matrices M
and K are

M¼ diag ðm1;…;mnÞ; mi40; i¼ 1;…;n; ð2Þ
with K symmetric positive definite and tridiagonal. We consider fixed-free boundary conditions,1 i.e.,

K ¼

k1þk2 �k2
�k2 k2þk3 �k3

⋱ ⋱ ⋱
�kn�1 kn�1þkn �kn

�kn kn

2
6666664

3
7777775

ð3Þ

with ki40; i¼ 1;…;n. This corresponds to a configuration with n masses connected by n springs of stiffnesses ki40,
attaching the first spring to a wall and leaving the last mass free.

If periodic solutions xðtÞ ¼ ueiωt of the unforced equations Mx
00 þKx¼ 0 are sought, then the vector u and the scalar ω

satisfy ðω2M�KÞu¼ 0. In other words, the natural frequencies of (1) are the square roots of the eigenvalues, and the natural
modes of vibration are the corresponding eigenvectors of the generalized eigenvalue problem

ðK�λMÞu¼ 0: ð4Þ
Sometimes (see e.g. [10]) it is convenient to rewrite this generalized eigenvalue problem as a conventional one

Jv¼ λv;

for the matrix

J ¼M�1=2KM�1=2
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The natural frequencies are the square roots of the eigenvalues of J, and the natural modes of vibration are u¼M�1=2v,
where v is the corresponding eigenvector. Notice that the matrix J is also symmetric positive definite and tridiagonal.

In this setting, the frequency isolation problem can be posed as follows:
Frequency isolation problem: Given a resonance band ðc�r; cþrÞ �R and matrices M ;K as in (2) and (3) such that some

eigenvalues of ðK�λMÞu¼ 0 lie inside the resonance band, find new matrices Mn and Kn, also as in (2) and (3), and close,
respectively, to M and K , such that no eigenvalue of ðK��λM�Þu¼ 0 lies inside the resonance band.

The frequency isolation problem is conceptually close to other well-known problems in the theory of vibrating systems
(and control theory), like the partial pole placement problem [5,6] and the eigenvalue embedding problem [4] or, more gen-
erally,model updating problems [12]. In all of them a potentially dangerous subset of the spectrum must be moved elsewhere
by appropriately updating the system parameters. However, there are important differences between them: while in the
frequency isolation problem no restriction is imposed on the ‘non-dangerous’ part of the spectrum, in the other three
problems this part of the spectrum and the corresponding eigenvectors must remain fixed. In fact, in model updating
problems, both a part of the spectrum and the corresponding eigenvectors must be preserved. Also, in the frequency iso-
lation problem, the main concern is to find a reasonably small update, and structure must be preserved, i.e., the update must
keep stringent symmetry, bandedness and definiteness constraints on the matrix coefficients of (4).

One comment to be made is that, of course, one can pose a mathematically more demanding question by asking Mn and
Kn to be as close as possible, for some appropriate metric in space (M,K), to M and K within the class of matrices of the forms
(2) and (3). However, this makes the problem considerably more difficult, since then it becomes an optimization problem
with constraints on interior eigenvalues. Whereas constraints on the largest (or smallest) eigenvalues can be treated by using,
for instance, semidefinite programming, in our case the resonant frequencies can be placed anywhere in the spectrum, and
this makes the optimization problem notoriously harder to deal with. Therefore, we will be deliberately vague, not speci-
fying the degree of closeness between ðM�;K�Þ and ðM ;K Þ. As a matter of fact, in practice, the decision on what is close and
what is not depends ultimately on the real-world constraints on the particular application which (4) comes from.

The frequency isolation problem has been previously addressed by Joseph [14], who proposed a Newton-type method for
structures vibrating at low frequencies. The computational cost of this algorithm, however, was very high, and the recon-
structed system was frequently far away from the initial one. Later, Egaña et al. proposed in [10] a less costly inverse
eigenvalue method: a target spectrum away from the resonance band is fixed in advance. Although there is an infinity of

1 We focus on these boundary conditions for the sake of concretion, but other boundary conditions allow for a similar treatment.
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