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a b s t r a c t

This communique proposes a multivariable super-twisting sliding mode structure which represents an
extension of the well-known single input case. A Lyapunov approach is used to show finite time stability
for the system in the presence of a class of uncertainty. This structure is used to create a sliding mode
observer to detect and isolate faults for a satellite system.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Sliding mode control has been an active area of research
for many decades due its (at least theoretical) invariance to a
class of uncertainty known as matched uncertainty (Utkin, 1992).
More recently these ideas have been exploited extensively for the
development of robust observers and have found applications in
the area of fault detection and fault tolerant control (Alwi, Edwards,
& Tan, 2011; Fridman, Davila, & Levant, 2008). However one of
the disadvantages of traditional sliding mode control (1st order
sliding modes) is the ‘chattering’ due to the discontinuous control
action (Utkin, 1992). Higher order sliding modes (HOSM) remove
the chattering effect while retaining the robustness of first order
sliding modes and improving on their accuracy (Fridman & Levant,
1996; Levant, 1993). A disadvantage of imposing an r-th order
sliding mode is the necessity of having s, ṡ..sr−1 available (where
s(t) is the switching surface). However in one special case of second
order sliding modes, the derivative information is not required.
This is the so-called ‘super-twisting’ approach (Levant, 1998).
Until very recently stability, robustness and convergence rates in
higher order sliding mode methods have been analyzed in terms
of homogeneity or geometric arguments (Levant, 2005). However
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in a succession of papers (Moreno & Osorio, 2008, 2012; Polyakov
& Poznyak, 2009), Lyapunov methods were employed successfully
for the first time to analyze the properties of the super-twisting
algorithm for uncertain systems. This has opened the door for
the integration of these ideas with other nonlinear tools including
gain adaptation (Alwi & Edwards, 2013; Gonzalez, Moreno, &
Fridman, 2012; Shtessel, Moreno, Plestan, Fridman, & Poznyak,
2010). However in all these developments a single input control
structure has essentially been considered. In many situations it
is possible by control input scaling to transform a multi-input
control problem with m control inputs into a decoupled problem
involving m single input control structures and so the approaches
in Alwi and Edwards (2013), Gonzalez et al. (2012) and Shtessel
et al. (2010) work satisfactorily. Instead, in this communique,
a multivariable super-twisting structure is proposed, which is
then analyzed using an extension of the Lyapunov ideas from
Moreno and Osorio (2012). An example involving a fault detection
problem in a satellite system is used to demonstrate a situation in
which the proposedmulti-input super-twisting structure is useful.
The notation used in the paper is quite standard—in particular,
throughout the paper, ∥·∥ is used to represent the Euclidean norm.

2. Problem statement and system description

In multivariable sliding mode control and observation, the
objective is to force to zero in finite time a constraint (or switching)
function given by σ(x), where x ∈ Rn is the state of the dynamical
system and σ : Rn

→ Rm Shtessel, Edwards, Fridman, and Levant
(2013). In calculating the total time derivative of σ , for the case of
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conventional (first order) sliding modes, an expression
σ̇ (t) = a(t, x) + b(t, x)v + γ (t, σ ) (1)
is established where v is the manipulated variable (the control
signal or the output error injection in the case of observer
problems), a(t, x) ∈ Rm and b(t, x) ∈ Rm×m are assumed to
be known, and γ (·) represents unknown (but usually bounded)
uncertainty. If det(b(t, x)) ≠ 0 then using the expression v =

b(t, x)−1(v̄ − a(t, x)) where the components of v̄ are

v̄i = −k1sign(σi)|σi|
1/2

− k2σi + zi (2)
żi = −k3sign(σi) − k4σi (3)
and k1, . . . , k4 are scalar gains, the system

σ̇i = −k1sign(σi)|σi|
1/2

− k2σi + zi + γi(t, σ ) (4)

żi = −k3sign(σi) − k4σi (5)
for i = 1 . . .m is obtained. Suppose |γi(t, σ )| ≤ di|σi| for some
scalars di, then if the gains k1 . . . k4 are chosen properly, it can be
proved that σi = σ̇i = 0 in finite time: see for example Moreno
and Osorio (2012). Alternatively if |γ̇i(t, σ )| ≤ d̄i for some finite
gains d̄i, then for appropriate gains k1 . . . k4, it can be proved that
σi = σ̇i = 0 in finite time: see Levant (1993) and Moreno and
Osorio (2012). In the literature such a controller is usually known
as a super-twisting controller (Fridman & Levant, 1996; Levant,
1993, 1998).

Suppose instead of (2)–(3) a non-decoupled injection term

v̄ = −k1
σ

∥σ∥1/2
+ z − k2σ (6)

ż = −k3
σ

∥σ∥
− k4σ (7)

is used where k1, . . . , k4 are scalars. Then the result is a set of
coupled equations rather than the decoupled structure in (4)–(5),
and the work in Moreno and Osorio (2012) cannot be employed
directly. (Note however, ifm = 1 then the scalar control structure
in (6)–(7) reverts to (2)–(3). Also in this situation k2 = k4 = 0 is
usually selected.) Substituting (6) into (1) yields a special case of
the system

σ̇ = −k1
σ

∥σ∥1/2
+ z − k2σ + γ (t, σ ) (8)

ż = −k3
σ

∥σ∥
− k4σ + φ(t) (9)

when φ(t) ≡ 0. The term φ(t) in (9) is included here to maintain
compatibility with the more generic formulation in Moreno and
Osorio (2012), and will be exploited in the example in Section 3.
The terms γ (t, σ ) and φ(t) are assumed to satisfy

∥γ (t, σ )∥ ≤ δ1∥σ∥ (10)

∥φ(t)∥ ≤ δ2 (11)
for known scalar bounds δ1, δ2 > 0.

Remark 1. Note that the uncertainty classes discussed earlier are
a subset of the uncertainty in (10). Also note the matrix b(t, x)
must be known to achieve the structures in (8)–(9) (and also the
decoupled one in (2)–(3)).

Remark 2. Also note that the differential equations in (4)–(5) and
(8)–(9) have discontinuous right hand sides. The solutions to such
equations must therefore be understood in the Filippov sense
(Filippov, 1998).

Remark 3. Equations such as (8)–(9) can also appear in the context
of observer problems as will be demonstrated in Section 3.

Proposition 1. For the system in (8)–(9), there exist a range of values
for the gains k1 . . . k4, such that the variables σ and σ̇ are forced to
zero in finite time and remain zero for all subsequent time.

Proof. For the system (8)–(9), consider as a Lyapunov-function2

candidate

V (σ , z) = 2k3∥σ∥ + k4σ Tσ +
1
2
zT z + ζ T ζ (12)

where ζ := k1 σ

∥σ∥1/2
+ k2σ − z. Define the subspace

S = {(σ , z) ∈ R2m
: σ = 0} (13)

then V (σ , z) in (12) is everywhere continuous, and differentiable
everywhere except on the subspace S. Furthermore it is easy to
verify that V (·) is positive definite and radially unbounded.

Differentiating the expression in (12) yields

V̇ (σ , z) =


2k3 +

k21
2


σ T σ̇

∥σ∥
+ 2


k22
2

+ k4


σ T σ̇ + 2zT ż

+
3
2
k1k2

σ T σ̇

∥σ∥1/2
− k2(σ̇ T z + σ T ż)

− k1


−

1
2

(σ T σ̇ )(zTσ)

∥σ∥5/2
+

(żTσ + zT σ̇ )

∥σ∥1/2


(14)

then substituting for (8)–(9) it follows from (14) using straightfor-
ward algebra that

V̇ (σ , z) = −


k1k3 +

k31
2


∥σ∥

2

∥σ∥3/2
+

3
2
k1k2

σ Tγ

∥σ∥1/2

− (k2k4 + k32)∥σ∥
2
−


k4k1 +

5
2
k1k22


∥σ∥

2

∥σ∥1/2

+ k21
σ T z
∥σ∥

+ 2k22σ
T z + 3k1k2

σ T z
∥σ∥1/2

− k2∥z∥2
+

k1
2

(σ T z)(zTσ)

∥σ∥5/2
− k1

zT z
∥σ∥1/2

+


2k3 +

k21
2


σ Tγ

∥σ∥
+ (2k4 + k22)σ

Tγ

− (k3k2 + 2k21k2)
∥σ∥

2

∥σ∥
− k2γ T z +

k1
2

σ Tγ zTσ
∥σ∥5/2

− k1
zTγ

∥σ∥1/2
+ 2zTφ − k2σ Tφ − k1

φTσ

∥σ∥1/2
(15)

for all (σ , z) ∉ S. Then from simple bounding arguments

V̇ (σ , z) ≤ −


k1k3 +

k31
2


∥σ∥

1/2
− (k3k2 + 2k21k2)∥σ∥

− (k2k4 + k32)∥σ∥
2
−


k4k1 +

5
2
k1k22


∥σ∥

3/2

+ k21
|σ T z|
∥σ∥

+ 2k22|σ
T z| + 3k1k2

|σ T z|
∥σ∥1/2

− k2∥z∥2
+

k1
2

|σ T z|2

∥σ∥5/2
+


2k3 +

k21
2


|σ Tγ |

∥σ∥

+ (2k4 + k22)|σ
Tγ | +

3
2
k1k2

|σ Tγ |

∥σ∥1/2

+ k2|γ T z| +
k1
2

|σ Tγ ||zTσ |

∥σ∥5/2
+ k1

|zTγ |

∥σ∥1/2

+ 2zTφ + k2|σ Tφ| + k1
|φTσ |

∥σ∥1/2
. (16)

2 Note that in the special case when m = 1, the Lyapunov function in (12)
becomes the one originally proposed in Moreno and Osorio (2012).
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