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a b s t r a c t

In this note, we address a fault-tolerant control scheme for asynchronous sequential machines with
permanent faults. The considered asynchronous machine is influenced by faults that change perpetually
a portion of its state transition logic. If the asynchronous machine has appropriate analytic redundancy
in its reachability, we can design a corrective controller so that the stable-state behavior of the closed-
loop system can match that of a reference model despite occurrences of permanent faults. It is assumed
that the controller is always fault-free. The existence condition and design procedure for an appropriate
controller are presented based on the corrective control scheme. We also provide a controller synthesis
example for validating the proposed scheme.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the unique feature of clockless operation, asynchronous
sequential machines are still being employed inmany applications
notwithstanding the inherent difficulty in their design (Sparsø &
Furber, 2001). To guarantee robust and reliable operation, sequen-
tial systems should be endowed with the capability of fault diag-
nosis and tolerance (Hadjicostis, 2004; Paoli, Sartini, & Lafortune,
2011), from which asynchronous sequential machines are not an
exception.

This paper presents a fault-tolerant control scheme for a class
of asynchronous machines. Our study is based on corrective con-
trol that has been developed as a novel and efficient method for
controlling asynchronous machines (Murphy, Geng, & Hammer,
2003; Yang, 2011; Yang & Hammer, 2008). The control objective
is fulfilled when the input/output behavior of the closed-loop sys-
tem matches that of a reference model. In the framework of cor-
rective control, only stable states are considered in evaluating
model matching between the machine and the reference model,
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in contrast with the case of synchronous machines (Di Benedetto,
Sangiovanni-Vincentelli, & Villa, 2001). In our discussion, we as-
sume that the controller is immune to faults, i.e., fault occurrence
is confined to the controlled machine.

The considered asynchronous machine is supposed to have
permanent state transition faults, namely a kind of faults that
cause the corruption of a state transition at a particular time
step and maintain the characteristic of the faulty transition
indefinitely. A common instance of such a fault is observed in
digital systems working in a space environment, where strong
radiation changes the state transition characteristics of the system
permanently (Smith & Mostert, 2007). The control objective is
to compensate the asynchronous machine so that the stable-
state behavior of the closed-loop system matches that of a given
referencemodel, while all the permanent state transition faults are
tolerated, meaning that the closed-loop system behaves normally
as if no faults occurred. This fault tolerance is made possible
if the considered asynchronous machine has potential analytic
redundancy in its reachability. We address the existence condition
and design procedure for an appropriate fault-tolerant controller
based on the corrective control scheme. Compared to critical
races (Murphy et al., 2003) and transient faults (Yang & Hammer,
2008), the influence of permanent faults is more serious because
once a transition is corrupted by fault, it cannot be used as a
segment of any correction trajectory. In other words, besides being
the adversarial entity that must be tolerated, a permanent fault
also restrains the reachability of the machine, which impedes fault
tolerance against subsequent fault occurrences.

The rest of this paper is organized as follows. In Section 2,
we introduce a mathematical model of asynchronous machines
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with permanent faults and the basic configuration of fault-tolerant
control. In Section 3, we present the necessary and sufficient
condition for the existence of a corrective controller that achieves
model matching as well as fault tolerance against permanent state
transition faults. In Section 4,wedemonstrate the design algorithm
of the proposed controller in a case study. Finally, Section 5
concludes the paper.

2. Preliminaries

We focus on a class of asynchronous sequentialmachineswhere
the present state is given as the output value, namely input/state
machines. An input/state asynchronous machine Σ is represented
by a four-tuple Σ := (A, X, x0, f ), where A is the input set, X is the
state set, x0 ∈ X is the initial state, and f : X × A → X is the state
transition function partially defined onX×A.Σ operates according
to a recursion of the form

xk+1 = f (xk, uk), k = 0, 1, 2, . . . ,

where the current state xk goes to the next state xk+1 asyn-
chronously in response to a switch of the input character to uk.

A valid state–input pair (x, v) ∈ X × A is called a stable combi-
nation if f (x, v) = x; otherwise, it is termed as a transient combi-
nation. A transient combination (x, v) induces a chain of transient
transitions, e.g., f (x, v) = x1, f (x1, v) = x2, . . . , until it reaches
the next stable state xs = f (xs, v). Due to the lack of a synchronizing
clock, these transitions are executed instantaneously. As a result,
from an outer user’s viewpoint, Σ seems to move directly from
(x, v) to (xs, v). The stable recursion function s : X ×A → X (Kohavi
& Jha, 2010) epitomizes this feature of asynchronous machines:

s(x, v) := xs.

A chain of transitions from one stable combination to another, as
described by s, is called a stable transition. s is often extended from
input characters to sequences recursively: for x ∈ X , v ∈ A and
w ∈ A+,

s(x, vw) := s(s(x, v), w).

A state x′ is said to be stably reachable from another state x if there
exists an input sequence t ∈ A+ such that x′

= s(x, t).

Definition 1. Associated with a valid pair of state and input
sequence (x, t) ∈ X × A+, define γ (x, t) ⊂ X × A as the set of
all the state–input pairs generated while the input sequence t is
applied to Σ at the stable state x.

Denote t = u1u2 · · · uk and let p1 = s(x, u1), p2 = s(p1, u2), . . . ,
pk = s(pk−1, uk) = s(x, t) be the intermediate stable states traced
by Σ on the way from x. Between pi and pi+1, Σ may pass through
a number of transient combinations, where i = 0, 1, . . . , k − 1
and p0 := x. Assuming that n(i) transient states exist between
pi and pi+1, denote by p1i , p

2
i , . . . , p

n(i)
i the corresponding transient

states, that is, f (pi, ui+1) = p1i , f (p
1
i , ui+1) = p2i , . . . , f (p

n(i)
i , ui+1)

= pi+1. By definition,

γ (x, t) =


i=0,...,k−1

{(pi, ui+1), (p1i , ui+1), . . . ,

(pn(i)i , ui+1), (pi+1, ui+1)}.

For describing permanent state transition faults occurring toΣ , we
define a set of state–input–state triplets F ⊂ X ×A× X as follows:

F := {(zi, vi, z ′

i )|1 ≤ i ≤ r}, (1)

where r denotes the number of elements of F . Under the normal
behavior, Σ at a state zi moves to the next stable state s(zi, vi)
in response to the input character vi. However, once a permanent

Fig. 1. Basic configuration of fault-tolerant control.

fault happens to Σ and its inner logic governing the transition of
(zi, vi) degenerates, Σ would be forced to reach an incorrect state
z ′

i ≠ s(zi, vi). We call each triplet (zi, vi, z ′

i ) ∈ F a faulty transition.
We specify that the set F is identified a priori, but the exactmoment
that each faulty transition occurs is unknown. For later usage, we
define

E := {(zi, vi)|1 ≤ i ≤ r} (2)

as the set of state–input pairs that can be corrupted by permanent
faults.

Fig. 1 shows the basic configuration of the fault-tolerant control
system used in this note. The considered machine Σ has the
permanent fault F . C is the corrective controller also constructed
in the form of an asynchronous machine. v ∈ A is the external
input, u ∈ A is the control input made by C , and x ∈ X is the
current state transmitted to C as the feedback value. Σc denotes
the asynchronous machine represented by the closed loop. The
reference model is given as a stable-state input/state machine
Σ ′

:= (A, X, x0, s′). Σ ′ has the same input and state set as those of
Σ , and all the states of Σ ′ are supposed to be fault-free.

We describe model mismatch between Σ and Σ ′ by a set D ⊂

X × P(A) × X , where P(A) is the power set of A:

D := {(yi, Ai, ymi )|1 ≤ i ≤ q}. (3)

Here, q denotes the number of combinations of a state and an input
set that incur model mismatch. (yi, Ai, ymi ) ∈ D implies thatΣ ′ has
the stable-state behavior s′(yi, a) = ymi for all a ∈ Ai, whereas Σ

does not (for some a ∈ Ai, (yi, a) may be undefined in Σ). yi and yj
are not necessarily different with each other; if yi = yj, Ai∩Aj = ∅.

Usually, the model Σ ′ is specified after Σ is designed. It
represents a desirable behavior that should have been included in
the original design of Σ , or an improved behavior that Σ must
show to carry out a given task. As it depends on the task, Σ ′ is
not unique in general. If Σ has the perfect behavior with respect
to nominal transitions, we set Σ ′

= Σ except for removing all the
permanent faults F from Σ ′ (in that case, D = ∅).

The main objective is to propose the existence condition and
design procedure for a controller C for which the stable-state
behavior of the closed-loop system Σc matches that of Σ ′ despite
occurrences of permanent state transition faults. Here matching
behavior means that Σc and Σ ′ show the identical input/state
functioning in terms of stable states (Murphy et al., 2003; Yang,
2011). For excluding unpredictable behavior, we assume that Σc
abides by the principle of fundamental mode operation (Kohavi &
Jha, 2010).

3. Fault tolerance against permanent faults

A corrective controller for model matching exists if and only if
for each model mismatch (yi, Ai, ymi ) ∈ D, we can find an input
sequence wi that drives Σ from the state yi to the desired state ymi
(Murphy et al., 2003), i.e.,

∀i = 1, . . . , q, ∃wi ∈ A+ s.t. ymi = s(yi, wi). (4)
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