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a b s t r a c t

This paper focuses on the design of time-homogeneous fully observedMarkov decision processes (MDPs),
with finite state and action spaces. The main objective is to obtain policies that generate the maximal set
of recurrent states, subject to convex constraints on the set of invariant probability mass functions. We
propose a design method that relies on a finitely parametrized convex program inspired on principles of
entropy maximization. A numerical example is provided to illustrate these ideas.

© 2014 Published by Elsevier Ltd.

1. Introduction

The formalism of Markov decision processes (MDPs) is widely
used to describe the behavior of systems whose state transitions
probabilistically among different configurations over time. The
impact of a control policy is felt through the actions that dictate
the state transition probabilities. Often, but not always, approaches
hinge on dynamic programming principles and presume costs
that are linear on the time-varying vector of probabilities of
the states (Altman, 1999; Bertsekas, 2005; Borkar, 1990, 2002;
Fox, 1966; Garg, Kumar, & Marcus, 1999; Hernandez-Lerma &
Lasserre, 1996; Hordijk & Kallenberg, 1979; Kumar & Varaiya,
1986; Puterman, 1994; Wolfe & Dantzig, 1962). For an extensive
survey, see Arapostathis, Borkar, Fernandez-Guacherand, Ghosh,
and Marcus (1993) and the references therein.

We focus on the design of time-homogeneous control poli-
cies for fully observable MDPs with finite state and action spaces,
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represented as X and U, respectively. In particular, we focus on
finding a policy that leads to the maximal set of recurrent states,
subject to convex constraints on the set of invariant joint probabil-
itymass function (pmf) on the state and action. This framework can
be applied to formalize the problemof designing policies for robots
taskedwith surveillance,where it is desirable that the largest num-
ber of states are persistently visited, subject to constraints (Arvelo,
Kim, &Martins, 2013).2 In this setup, the states that are persistently
surveilled are the recurrent states of the underlying Markov chain.

1.1. Comparison with existing work

A similar framework has been studied in a series of papers
by Arapostathis et al., where the state probability distribution is
restricted to be bounded above and below by safety vectors at
all times. In Arapostathis, Kumar, and Hsu (2005); Arapostathis,
Kumar, and Tangirala (2003);Hsu, Arapostathis, andKumar (2010),
the authors propose algorithms to find the set of distributions
whose evolution under a given control policy respect the safety
constraint. In Wu, Arapostathis, and Kumar (2004), an augmented
Markov chain is used to find the maximal set of probability
distributions whose evolution respects the safety constraint over
all admissible non-stationary control policies.

2 The paper Arvelo et al. (2013) describes an application of the results presented
here.
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Here we obtain the policy that leads to the maximal set
of recurrent states, subject to convex constraints on the set of
invariant pmfs. The main contribution of this paper is to solve this
problem via a finitely parametrized convex program. Our approach
is rooted in entropy maximization, and the proposed solution can
be easily implemented using standard convex optimization tools,
such as the ones described in Grant and Boyd (2011).

1.2. Paper organization

The remainder of this paper is organized as follows. Section 2
provides notation, basic definitions and the problem statement.
The convex program that solves the problem is presented in
Section 3. Numerical examples are given in Section 4, and con-
clusions are discussed in Section 5.

2. Preliminaries and problem statement

The following notation is used throughout the paper:

X state space of the MDP
U set of control actions
Xk state of the MDP at time k
Uk control action at time k
PX set of all pmfs with support in X
PU set of all pmfs with support in U
PXU set of all joint pmfs with support in X × U
Sf support of a pmf f

The recursion of the MDP is given by the (conditional) pmf of
Xk+1 given the previous state Xk and the control action Uk, and is
denoted as:

Q(x+, x, u)
def
= P(Xk+1 = x+

|Xk = x,Uk = u).

We denote any time-homogeneous control policy by

K(u, x)
def
= P(Uk = u|Xk = x), u ∈ U, x ∈ X

where


u∈U K(u, x) = 1 for all x in X. The set of all such policies
is denoted as K.

Assumption. Throughout the paper, we assume that theMDPQ is
given. Hence, all quantities and sets that depend on the closed loop
behavior are indexed only by the underlying control policy K .

A pmf fXU in PXU is said to be invariant under control policy K
if it satisfies the following invariance relation:

fXU(x+, u+) = K(u+, x+)


x∈X,u∈U

Q(x+, x, u)fXU(x, u), (1)

for all x+ inX and u+ inU. The set of invariant pmfs associatedwith
control policy K is given by:

IK
def
=


fXU ∈ PXU : (1) holds with control policy K


.

Finally, the set of all invariant pmfs are given by:

I
def
=


K∈K

IK .

Problem 2.1. GivenW, which is a convex subset ofPXU, find a joint
pmf f ∗

XU in I ∩ W and a corresponding control policy K∗ such that
the following inclusion holds:

SX
fXU ⊆ SX

f ∗XU
, fXU ∈ I ∩ W; (2)

where SX
f = {x ∈ X|


u∈U f (x, u) > 0}.

Remark. Note that a pmf f ∗

XU that satisfies (2) hasmaximal support
among all members of the set I ∩ W.

2.1. Comparison with graph-based methods and reachability con-
cepts

Once a control policy is applied to an MDP, one can construct a
directed graph of transitions for the resulting Markov chain. Here,
the vertices of the graph are the states and an edge from i to j indi-
cates that the transition from i to j has positive probability. In this
case, the set of recurrent states is the union of the strongly con-
nected components that are closed, each representing a recurrent
class. Hence, one could use standard algorithms (Cormen, Leiser-
son, Rivest, & Stein, 1990), such as Kosaraju’s or Tarjan’s, to effi-
ciently find the strongly connected components of the graph and
perform the union of the ones that are closed. However, finding a
control policy that ‘‘maximizes’’ the set of recurrent states cannot
be easily obtained using this method because the graph of transi-
tions may change for different candidate solutions. Furthermore,
because we consider constraints on the set of invariant pmfs, both
the maximal set of recurrent states and the corresponding control
policies will, in general, depend on the actual values of the entries
of the transition probability matrices. Examples of constraints of
interest include lower and upper bounds on invariant pmfs evalu-
ated at pre-selected state and action pairs, or on the expected value
of a function of the state and (or) action.

Broadly speaking, reachability is concerned with the determi-
nation of whether a set of states can be reached from another via
an appropriate control policy (Tabuada, 2010). There are twomain
reasons why our formulation cannot be cast as a reachability prob-
lem. The first is that reachability is in general distinct from recur-
rence, such as, for instance, when a reachable state is transient. The
second follows from the discussion above, where we emphasize
that optimal solutionsmay depend on the probabilities of the tran-
sitions, and not only on whether which ones occur with nonzero
probability.

Numerical examples are provided in Section 4 that illustrate
how different convex constraints on the set of invariant pmfs
can induce changes on both the optimal control policies and the
resulting maximal sets of recurrent states.

3. Solution via convex optimization

We propose the following optimization program to solve
Problem 2.1:

f ∗

XU = arg max
fXU∈W

H(fXU) (3)

subject to:
u+∈U

fXU(x+, u+) =


x∈X,u∈U

Q(x+, x, u)fXU(x, u), x+
∈ X (4)

where H : PXU → ℜ≥0 is the entropy of fXU , and is given by

H(fXU) = −


u∈U


x∈X

fXU(x, u) ln(fXU(x, u)),

where we adopt the standard convention that 0 ln(0) = 0.

Remark. Thedimension of the search space is givenby thenumber
of elements in the product set X × U. In many applications, such
as in persistent surveillance (Arvelo et al., 2013), the number of
possible control actions U is small compared to X, which may
represent the possible locations and orientations of a robot. Since
the optimization program (3)–(4) is convex, it can be efficiently
solved even when the search space is of very large dimension.
There are as many linear equality constraints in (3)–(4) as there
are elements in X, and additional constraints can be included such
as in the examples of Section 4.
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