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a b s t r a c t

Analytical tools to measure the performance of a control system described by a discrete-time descriptor
jump linear system are given. Specifically, a closed-form expression for the steady-state output power as
well as a bound for the performance index related to the H∞ control problem are given. The analysis is
made by introducing new operators to handle the singularity of the system.
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1. Introduction

Closed-form formulas to measure the degradation of performa-
nce of aMarkov jump linear system (MJLS), which is a non-singular
system, have been proposed in Gray, Zhang, and Gonzalez (2003);
Ling and Lemmon (2004); Zhang, Gray, and González (2008);
Wang, Gray, González, and Chávez (2013).

These available tools cannot be adapted in a simple way to han-
dle systems with singularities. In this paper, a closed-form expres-
sion for the steady-state output power to evaluate the performance
of a control singular system as well as a bound for the norm of the
H∞ control problem are given.

Singular systemswith jumps are also called descriptor jump lin-
ear systems (DJLS). In contrast with an MJLS, the difficulty of deal-
ing with a DJLS lies in the presence of a singular factor on the left
hand side of the state equation of the system. Recursive equations
that play a central role in MJLS cannot be directly employed here;
instead, a more fruitful approach is to consider algebraic equations
like (5), which is handled by introducing the new operator T (see
(3)), and Eqs. (7) and (11) which are handled by introducing the
perturbed operator Tϵ (see (8)).
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The formula for the steady-state output power, denoted by Js, is
derived in Section 2. A bound for the index of performance related
to the H∞ control problem, which is denoted by J∞, is obtained in
Section 3. The conclusions are given in Section 4.

2. The steady-state output power

Consider the following DJLS:

Sθ(k+1)x(k + 1) = Aθ(k)x(k) + Bθ(k)ω(k) (1a)

y(k) = Cθ(k)x(k), (1b)

where x(k) ∈ Rn is the state continuous vector, ω(k) ∈ Rq is a dis-
turbance input and y(k) ∈ Rp is the output of the system. The non-
negative integer variable k = 0, 1, . . . denotes the sample period
number. The initial state x(0) = x0 (x0 ∈ X ⊂ Rn) is a random vec-
tor with finite secondmoment. The process θ(k) is a first-order ho-
mogeneous Markov chain (MC) taking values in Sθ , {1, . . . ,N},
N ≥ 2. The transition probability matrix of θ(k) is denoted by P =

[pij], i, j ∈ Sθ , and π(k) = [p1(k) . . . pN(k)] denotes the kth state
probability vector, where pi(k) , Pr(θ(k) = i), k ≥ 0. In particular
when k = 0, we denote π(0) = π ∈ Θ , where Θ denotes the set
of all initial distributions of θ(k). It is assumed that θ(k) is ergodic
so that there exists pi (irrespective of π ) such that pi = limk→∞

pi(k). It is assumed that θ(0) and x(0) are independent. For i ∈ Sθ ,
thematricesAi, Bi, and Ci have appropriate dimensions, Si is an n×n
matrix with rank(Si) = ri ≤ n. When ri = n for all i ∈ Sθ the sys-
tem is called non-singular; otherwise it is called singular. For the
remainder of the paper, x(k) is assumed to be a well-defined sec-
ond order random variable (e.g., ensuring that E{x(k)x′(k)} exists).
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The symbol ∥ · ∥ denotes the Euclidean norm and [ · ]
′ stands for

the matrix transpose.

Definition 1. Consider System (1). Then

Js , lim
k→∞

E{∥y(k)∥2
},

J∞ , sup
θ(0)∈Θ,w∈ℓ2

∞
k=0

E{∥y(k)∥2
}

∞
k=0

E{∥w(k)∥2}

, x0 = 0.

Note that ∥ω∥
2 ,


∞

k=0 E{∥w(k)∥2
}. Following (Costa, Fragoso,

& Marques, 2005) let us define

Q (k) , E

x(k)x′(k)


, (2a)

Qi(k) , E

x(k)x′(k)1{θ(k)=i}


, i ∈ Sθ , (2b)

Wi(k) , E

ω(k)ω′(k)1{θ(k)=i}


, i ∈ Sθ (2c)

and the following bounded operators:

A ,

P ′

⊗ In2

diag (A1 ⊗ A1, . . . , AN ⊗ AN) ,

B ,

P ′

⊗ In2

diag (B1 ⊗ B1, . . . , BN ⊗ BN) ,

S , diag (S1 ⊗ S1, . . . , SN ⊗ SN) ,

T , S − A. (3)

Definition 2 is adapted from Costa et al. (2005); Costa and
Marquez (1998). If a symmetric matrix A is positive semi-definite
it is written as A ≥ 0.

Definition 2. System (1a) is said to be mean square stable (MSS) if
for any x0 ∈ X and any π ∈ Θ there exists a matrix Q ≥ 0 such
that Q = limk→∞ Q (k).

The following lemma, given in Chávez, Costa, and Terra (2011),
characterizes theMSS of System (1a) in terms of thematricesQi(k).

Lemma 1. System (1a) is MSS if and only if for any x0 ∈ X and any
π ∈ Θ there exists Qi ≥ 0 such that Qi = limk→∞ Qi(k) for all i ∈ Sθ .

The matrix Qi can be obtained from Lemma 2, whenever T is
invertible. To present this result, let us write Q =

Q ′

1 · · ·Q ′

N

′
,

whereQi = vec(Qi), i ∈ Sθ .

Lemma 2. Let System (1a) be MSS and assume that ω(k) is a zero
mean white noise process with identity covariance matrix Iq and in-
dependent of θ(k) and x0. Then the following equation holds:

T Q = Bp, (4)

where p =
p′

1 . . .p′

N

′ andpi = vec(Iq)pi, i ∈ Sθ .

Proof. Fix j ∈ Sθ . Since E{ω(k)ω′(ℓ)} = Iq1{k=ℓ}, then

SjE

x(k + 1)x′(k + 1)1{θ(k+1)=j}


S ′

j

=

N
i=1


AiE


x(k)x′(k)1{θ(k+1)=j}1{θ(k)=i}


A′

i


+

N
i=1


AiE


x(k)ω′(k)1{θ(k+1)=j}1{θ(k)=i}


B′

i


+

N
i=1


BiE


ω(k)x′(k)1{θ(k+1)=j}1{θ(k)=i}


A′

i

+ BiE

Iq1{θ(k+1)=j}1{θ(k)=i}


B′

i


.

Since ω(k) is a zero mean white noise and taking into account the
independence assumption this equation can be reduced to

SjE

x(k + 1)x′(k + 1)1{θ(k+1)=j}


S ′

j

=

N
i=1


AiE


x(k)x′(k)1{θ(k+1)=j}1{θ(k)=i}


A′

i

+ BiE

Iq1{θ(k+1)=j}1{θ(k)=i}


B′

i


and due to the fact that θ(k) is anMC this can bewritten as follows:

SjE

x(k + 1)x′(k + 1)1{θ(k+1)=j}


S ′

j

=

N
i=1

[AiE{x(k)x′(k)1{θ(k)=i}}pijA′

i + BiIqpijpi(k)B′

i]

=

N
i=1


AiQi(k)pijA′

i + BiIqpijpi(k)B′

i


.

Hence,

SjQj(k + 1)S ′

j −

N
i=1

AiQi(k)A′

ipij =

N
i=1

BiIqB′

ipijpi(k).

Lemma 1 and the ergodicity of θ(k) make it possible to take limits
as k → ∞ on both sides of this equation resulting in

SjQjS ′

j −

N
i=1

AiQiA′

ipij =

N
i=1

BiIqB′

ipijpi. (5)

The claim follows by applying the vec operator in (5) and collecting
all values of j ∈ Sθ . �

The column vector Q has N column-block vectors. Since Qi =

vec(Qi), Qi = vec−1
Qi

, whereQi is the ith block of Q , which can

be calculated from Eq. (4), whenever T is invertible. Now a closed-
form expression for Js can be obtained.

Theorem 1. Let System (1) be MSS and let T be invertible. Then

Js =

N
i=1

tr

CiQiC ′

i


. (6)

Proof. From (1b) and (2b), it follows

E

∥y(k)∥2

= E

x′(k)C ′

θ(k)Cθ(k)x(k)


= E

tr

Cθ(k)x(k)x′(k)C ′

θ(k)


= E


tr


N
i=1

Cix(k)x′(k)1{θ(k)=i}C ′

i



=

N
i=1

tr

CiQi(k)C ′

i


.

Since the systems is MSS, Eq. (6) follows from Lemmas 1 and 2, by
taking limits as k → ∞ on both sides of this equation. �

Remark. According to Lemma 2 if we take the set of matrices (1+

ϵ2)−1/2Ai and p−1/2
i B1/2

i for a small enough ϵ > 0 such that (T −

ϵ2A) is invertible, then there exists a unique set of matrices Qj ≥ 0
satisfying the system

SjQjS ′

j − (1 + ϵ2)

N
i=1

AiQiA′

ipij =

N
i=1

Bipij. (7)

This fact will be used in the following section.
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