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a b s t r a c t

The problem of boundary stabilization is considered for some classes of coupled parabolic linear PDEs
of the reaction–diffusion type. With reference to n coupled equations, each one equipped with a scalar
boundary control input, a state feedback law is designedwith actuation at only one end of the domain, and
exponential stability of the closed-loop system is proven. The treatment is addressed separately for the
case in which all processes have the same diffusivity and for the more challenging scenario where each
process has its owndiffusivity and a different solution approach has to be taken. The backsteppingmethod
is used for controller design, and, particularly, the kernelmatrix of the transformation is derived in explicit
form of series of Bessel-like matrix functions by using the method of successive approximations to solve
the corresponding PDE. Thus, the proposed control laws become available in explicit form. Additionally,
the stabilization of an underactuated system of two coupled reaction–diffusion processes is tackled under
the restriction that only a scalar boundary input is available. Capabilities of the proposed synthesis and its
effectiveness are supported by numerical studiesmade for three coupled systemswith distinct diffusivity
parameters and for underactuated linearized dimensionless temperature-concentration dynamics of
a tubular chemical reactor, controlled through a boundary at low fluid superficial velocities when
convection terms become negligible.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of boundary stabilization is considered for some
classes of coupled linear parabolic Partial Differential Equations
(PDEs) in a finite spatial domain x ∈ [0, 1]. Particularly,
by exploiting the so-called ‘‘backstepping’’ approach (Krstic &
Smyshlyaev, 2008; Smyshlyaev & Krstic, 2004), this work is de-
voted to ‘‘approximation-free’’ control synthesis not relying on any
discretization or finite-dimensional approximation.

The backstepping-based boundary control problem for scalar
heat processes was studied, e.g., in Liu (2003) and Smyshlyaev
and Krstic (2004). Several classes of scalar wave processes were
studied, e.g., in Krstic (2010) and Smyshlyaev and Krstic (2009),
whereas complex-valued PDEs such as the Schrodinger equation
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were also dealt with by means of such an approach (Krstic, Guo, &
Smyshlyaev, 2011). Synergies between the backstepping method-
ology and the flatness-based approach were studied in Meurer
(2012) and Meurer and Kugi (2009) with reference to the case
of spatially- and time-varying coefficients and covering spatial
domains of dimension 2 and higher. In particular, in the latter situ-
ation conditions on the target system arise that somewhat resem-
ble those considered in the remainder of the present paper. The
backsteppingmethodology was also applied to observer design for
linear parabolic PDEs with non constant coefficients in one- and
multi-dimensional spatial domains Jadachowski, Meurer, and Kugi
(2015) and Smyshlyaev and Krstic (2005).

More recently, high-dimensional systems of coupled PDEs are
being considered in the backstepping-based boundary control
setting. The most intensive efforts of the current literature are
however oriented towards coupled hyperbolic processes of the
transport-type (Aamo, 2013; Di Meglio, Vazquez, & Krstic, 2013;
Di Meglio, Vazquez, Krstic, & Petit, 2012; Vazquez, Coron, Krstic,
& Bastin, 2013; Vazquez, Krstic, & Coron, 2011). The state feed-
back design in Vazquez et al. (2011), which admits stabilization of
2×2 linear heterodirectional hyperbolic systems, was extended in
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Di Meglio et al. (2012) to a particular type of 3 × 3 linear systems,
arising in modeling of multiphase flow, and to the quasilinear case
in Vazquez et al. (2013). In Aamo (2013), a 2 × 2 linear hyperbolic
systemwas stabilized by a single boundary control input, with the
additional feature that an unmatched disturbance, generated by an
a priori known exosystem, is rejected. In Di Meglio et al. (2013), a
system of n + 1 coupled first-order hyperbolic linear PDEs with a
single boundary input was studied.

In a recent publication (Tsubakino, Krstic, & Yamashita, 2013),
two parabolic reaction–diffusion processes coupled through the
corresponding boundary conditions were dealt with. The stabi-
lization of the coupled equations is reformulated in terms of the
stabilization problem for a unique process, with piecewise contin-
uous diffusivity and (space-dependent) reaction coefficient, which
can be viewed as the ‘‘cascade’’ between the two original systems.
The problem is solved by using a unique control input acting only
at a boundary. A non conventional backstepping approach with a
discontinuous kernel function was employed under a certain in-
equality constraint involving the diffusivity parameters of the two
systems and the corresponding lengths of their spatial domains.

Some specific results concerning the backstepping based
boundary stabilization of parabolic coupled PDEs have addition-
ally been presented in the literature (Aamo, Smyshlyaev, & Krstic,
2005; Vazquez & Krstic, 2010; Vazquez, Schuster, & Krstic, 2008,
2009). In Aamo et al. (2005), the Ginzburg–Landau equations,
which represent a 2 × 2 system with equal diffusion coefficients
when the imaginary and real parts are expanded, was dealt with.
In Vazquez and Krstic (2010), the linearized 2 × 2 model of
thermal-fluid convection, which entails very dissimilar diffusivity
parameters, has been treated by using a singular perturbations ap-
proach combined with backstepping and Fourier series expansion.
In Vazquez, Schuster et al. (2008), an observer that estimates the
velocity, pressure, electric potential and current fields in a Hart-
mann flowwas presentedwhere the observer gains were designed
using multi-dimensional backstepping. In Vazquez et al. (2009),
the boundary stabilization of the linearized model of an incom-
pressiblemagnetohydrodynamic flow in an infinite rectangular 3D
channel, also recognized asHartmann flow,was achievedby reduc-
ing the original system to a set of coupled diffusion equations with
the same diffusivity parameter and by applying backstepping.

It is of interest to note that the multidimensional transforma-
tion considered in the presentwork generalizes the bi-dimensional
backstepping transformation used in Aamo et al. (2005). Apart
from this, the set of linear coupled kernel PDEs that was derived
in Vazquez, Schuster et al. (2008); Vazquez et al. (2009) for the
magnetohydrodynamic channel flow is another inspiration for the
present investigation. An additional interesting feature of back-
stepping, which further motivates our work, is that it admits an
easy synergic integration with robust control paradigms such as
the sliding mode control methodology (see, e.g., Guo & Jin, 2014).

Thus motivated, the primary concern of this work is to extend
the backstepping synthesis developed in Smyshlyaev and Krstic
(2004), where stabilizing boundary controllers were designed for
scalar unstable reaction–diffusionprocesses. Here, a generalization
is provided by considering a set of n reaction–diffusion processes,
which are coupled through the corresponding reaction terms. The
motivation behind the present investigation comes from chemical
processes (Orlov & Dochain, 2002) where coupled temperature-
concentration parabolic PDEs occur to describe the process
dynamics.

A constructive synthesis procedure, with all boundary con-
trollers given in explicit form, presents the main contribution of
the paper to the existing literature. As shown in the paper, this
generalization is far from being trivial because the underlying
backstepping-based treatment gives rise to more complex devel-
opment of finding out an explicit solution in the form of Bessel-like
matrix series.

The present treatment addresses, side by side, two distinct sit-
uations which require quite different solution approaches to be
adopted. First, the case where all processes have the same diffusiv-
ity (‘‘equi-diffusivity’’ case, recently announced in Baccoli, Orlov,
& Pisano, 2014) is attacked, and then the more challenging sce-
nario where each process possesses its own diffusivity (‘‘distinct-
diffusivity’’ case) is treated. Under the requirement that the
considered multi-dimensional process is fully actuated by a set of
n boundary control inputs acting on each subsystem, all these ap-
proaches are shown to exponentially stabilize the controlled sys-
tem with an arbitrarily fast convergence rate.

Apart from this, the stabilization problem of an underactuated
systemof 2 coupled reaction–diffusionprocesses,which is relevant
to regulation of tubular chemical reactors (Orlov & Dochain, 2002),
is addressed under the restriction that only a unique scalar bound-
ary input is available whereas the overall system features a certain
minimum-phase property and it meets an additional restriction in
the form of a suitable inequality involving both the plant and con-
troller parameters. Exponential stability of the closed loop system
is achieved in this case aswell, but unlike the previously developed
approaches the associated convergence rate cannot be made arbi-
trarily fast anymore.

The structure of the paper is as follows. In Section 2, the problem
statement is presented and the underlying backstepping transfor-
mation is introduced. In Section 3, the ‘‘equi-diffusivity’’ scenario
is investigated. Explicit solution of the kernel PDE is given for both
the direct and inverse transformations, and the resulting boundary
control design is presented. In Section 4, the ‘‘distinct-diffusivity’’
case is dealt with, which involves a simplified backstepping trans-
formation defined by a scalar kernel function rather than a matrix
one. Section 5 investigates the stabilization problem of an under-
actuated system of 2 coupled reaction–diffusion processes where
only a unique scalar manipulable boundary input is available. Sec-
tion 6 presents some simulation results. Finally, Section 7 collects
concluding remarks and features future perspectives of this re-
search.

1.1. Notation

The notation used throughout is fairly standard. L2(0, 1) stands
for the Hilbert space of square integrable scalar functions z(ζ ) on
(0, 1) with the corresponding norm

∥z(·)∥2 =

 1

0
z2(ζ )dζ . (1)

Also, the notation

[L2(0, 1)]n =
L2(0, 1) × L2(0, 1) × · · · × L2(0, 1)  

n times
and

∥Z(·)∥2,n =

 n
i=1

∥zi(·)∥2
2 (2)

is adopted for the corresponding norm of a generic vector function
Z(ζ ) = [z1(ζ ), z2(ζ ), . . . , zn(ζ )] ∈ [L2(0, 1)]n.

J1(·) and J2(·) (I1(·) and I2(·)) stand for the first and second order
(modified) Bessel functions of the first kind.

With reference to a generic real-valued square matrix A of
dimension n, S[A] denotes its symmetric part S[A] = (A +

AT )/2, and σi(A) (i = 1, 2, . . . , n) the corresponding eigenvalues.
Provided that A is also symmetric and positive definite, σm(A) and
σM(A) denote respectively the smallest and largest eigenvalues of
A, i.e., σm(A) = min1≤i≤n σi(A), σM(A) = max1≤i≤n σi(A). Finally,
In×n stands for the identity matrix of dimension n.
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