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An output feedback controller is proposed for stabilization of the inverted pendulum on a cart in the
presence of uncertainties. The output feedback controller has a multi-time-scale structure in which
Extended High-Gain Observers are used to estimate system states and uncertainties in the first and fastest
time scale; dynamic inversion is used to deal with uncertain input coefficients in the second time scale; the
pendulum converges to a reference trajectory in the third time scale; and finally, the reference trajectory
is designed such that both the pendulum and the cart converge to the desired equilibrium in the fourth and
slowest time scale. The multi-time-scale structure allows independent analysis of the dynamics in each
time scale and singular perturbation methods are effectively utilized to establish exponential stability of
the equilibrium. Simulation results indicate that the output feedback controller provides a large region of
attraction and experimental results establish the feasibility of practical implementation.
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1. Introduction

An inverted pendulum on a cart is a classical example of an
underactuated mechanical system and its stabilization problem
has been investigated by many researchers. Based on linearized
system dynamics, controllers can be designed to stabilize the
equilibrium but the size of the region of attraction is typically
small. Furthermore, these controllers are not very effective in
the presence of significant uncertainties in the system model.
In this paper we present an output feedback control design
that can stabilize the equilibrium in the presence of significant
uncertainties and provide a large region of attraction.

One representative approach for stabilization of the inverted
pendulum on a cart is based on the energy of the system.
Spong and Praly (1996) used partial feedback linearization to
linearize the cart dynamics followed by transfer of energy from
the cart to the pendulum. A stabilizing controller is invoked when
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the configuration of the system reaches a neighborhood of the
equilibrium. Astrom and Furuta (2000) used a Lyapunov function
based on the potential energy of the pendulum, and Lozano,
Fantoni, and Block (2000) stabilized the pendulum around its
homoclinic orbit prior to stabilization. Fradkov (1996) developed
a control method using an energy-based objective function
and the speed-gradient, and Shiriaev, Egeland, Ludvigsen, and
Fradkov (2001) proposed a modified controller using the idea
of variable structure systems. Muralidharan, Ravichandran, and
Mahindrakar (2009) designed a controller for the two-wheeled
inverted pendulum using the interconnection and damping-
passivity-based control (IDA-PBC) method proposed by Ortega,
Spong, Gomez-Estern, and Blankenstein (2002) for underactuated
systems. Sarras, Acosta, Ortega, and Mahindrakar (2013) combined
the approach of the Immersion and Invariance proposed by Astolfi,
Karagiannis, and Ortega (2007) with the Hamiltonian formulation
to accommodate underactuation degree greater than one. Bloch,
Chang, Leonard, and Marsden (2001); Bloch, Leonard, and Marsden
(2000) used the controlled Lagrangian approach to derive a desired
closed-loop system dynamics for stabilization. The controller is
designed by matching the dynamic equations for the uncontrolled
and controlled Lagrangians. In Bloch et al. (2000), only the kinetic
energy was shaped to obtain the desired dynamics whereas both
kinetic and potential energies were shaped in Bloch et al. (2001).
Angeli (2001) developed a smooth feedback law for almost-global
stabilization based on the energy-shaping control strategy in
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Bloch et al. (2000). Auckly, Kapitanski, and White (2000) derived
a stabilizing controller by solving a set of linear partial differential
equations; these equations were obtained by matching the desired
closed-loop system dynamics based on the potential energy with
the original dynamics.

Among other approaches, Mazenc and Praly (1996) and Teel
(1996) developed control methods based on the concept of
interconnected systems. In Mazenc and Praly (1996), the stability
analysis was carried out using a Lyapunov function whereas in
Teel (1996) a nonlinear small gain theorem was used. Olfati-
Saber (2002) proposed a transformation to convert the system into
cascade normal form, for which existing control methods can be
used for stabilization. A two-time-scale approach was proposed
by Getz and Hedrick (1995) and Srinivasan, Huguenin, and Bonvin
(2009). In Getz et al. (1995), the trajectories of the pendulum
were rapidly converged to a reference trajectory and the reference
trajectory was slowly varied to converge the cart to its desired
position. In Srinivasan et al. (2009), low gains were used near
the equilibrium for separation of time scales. All of the methods
discussed above require exact knowledge of the system dynamics
and are unlikely to guarantee stabilization in the presence of
significant uncertainties.

To deal with uncertainties of the system model, Ravichandran
and Mahindrakar (2011) used a two-time-scale approach together
with Lyapunov redesign. However, the transient behavior of the
fast system was not analyzed. Park and Chwa (2009) utilized two
sliding surfaces for the pendulum and cart subsystems to stabilize
the system in the presence of disturbances but uncertainties in
system parameters were not considered. Adhikary and Mahanta
(2013) used backstepping and sliding mode control to the normal
form of the system. Both uncertainties and disturbances were
considered but they were introduced after the system was
converted into normal form. Xu, Guo, and Lee (2013) used integral
sliding-mode control (Cao & Xu, 2004) to deal with uncertainties
in the two-wheeled mobile inverted pendulum but the size of the
region of attraction of the equilibrium is small since the controller
is designed based on the linearized system dynamics.

In this paper we present an output feedback controller to
stabilize the inverted pendulum on a cart in the presence
of significant uncertainties. Extended High-Gain Observers and
dynamic inversion are combined together with a multi-time-scale
structure to deal with model uncertainties. The stability analysis
for the multi-time-scale structure is carried out using singular
perturbation methods; the advantage of this approach is that
the behavior of the system can be analyzed independently for
each time scale. The multi-time-scale structure of the controller
effectively provides a large region of attraction and this is
illustrated through simulations. Output feedback control of the
inverted pendulum on a cart has not been proposed earlier and it
is shown here that it can recover the performance of the system
under state feedback.

The paper is organized as follows. In Section 2, a state
feedback controller is designed using a two-time-scale structure;
uncertainties are not considered. In Section 3, the output
feedback controller is designed in the presence of uncertainties.
Simulation and experimental results are presented in Section 4 and
conclusions are provided in Section 5.

2. Stabilization in the absence of uncertainties

We present a control strategy to stabilize the desired equilib-
rium of the inverted pendulum on a cart system, in the absence of
uncertainties. The controller is based on the designs proposed by
Getz (1995) and Srinivasan et al. (2009); here we cast the closed-
loop system dynamics in two-time scale format for the purpose of
stability analysis. The stability analysis is done by transforming the
system into a standard singularly perturbed one.
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Fig. 1. Inverted pendulum on a cart.
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Remark 1. As an intermediate step for the output feedback
controller in Section 3, we design a controller in this section in the
absence of uncertainties.

2.1. Dynamics of an inverted pendulum on a cart

The dynamics of an inverted pendulum on a cart are given by
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where m,, m, are masses of the pendulum and the cart, resp-
ectively; g is the acceleration due to gravity; and ¢ is the length
of the pendulum—see Fig. 1. The variables x and « denote the
position of the cart and the angular displacement of the pendulum,
respectively; « is measured clockwise from the vertical following
the notation in Getz (1995). The variable F denotes the force
applied on the cart and is the control input. With the choice of state
variables

X1 =X, X = X, o =a, O =a

the system equations of (1) take the form

X1 = X2, Xy = fi(ar, az, F), a1 = 0y, 2)
&y = fo(or1, &z, F)
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We consider equations in (2) over the domain x = [x1, x2]” € Dy
anda = [o, a3]" € Dy Where Dy = {—ay, < X1 < Gy, } X {—ay, <
X < Oy} CR*and Dy = {—dy, < 01 < Gy, } X {—ly, < 07 <
de,} C R? are bounded. The constants, dy,, dx,, de,, and d,, are
positive numbers and a,, < /2.

2.2. Control design

The choice of the control input

F=(m;+my,—m, cos? o) (u— Gy) (4)
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