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a b s t r a c t

We present a reactive strategy for the navigation of a mobile robot in dynamic a priori unknown envi-
ronments densely cluttered with moving and deforming obstacles. Mathematically rigorous analysis of
this law with the proof of its global convergence is provided; its performance is confirmed by computer
simulations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The capability to safely operate in dynamic and a priori un-
known environments is a key requirement to mobile robots. De-
spite extensive research, this issue still represents a real challenge
in many cases, often because of uncertainties and deficiencies in
available knowledge.

With a focus on the planning horizon, relevant algorithms can
be classified into global and local planners (Lapierre, Zapata, & Lep-
inay, 2007). Global planners (GP) generate a complete trajectory
based on a comprehensive model of the scene, which is built from
a priori and sensory data (Latombe, 1991). For dynamic scenes,
this approach is exemplified by several techniques (surveyed in
e.g., Kulić & Vukić, 2006, Large, Lauger, & Shiller, 2005), includ-
ing state-time space (Erdmann & Lozano-Perez, 1987; Fraichard,
1999; Reif & Sharir, 1994), velocity obstacles (Fiorini & Shiller,
1998; Large et al., 2005), and nonholonomic planners (Qu, Wang,
& Plaisted, 2004a). Many GP’s are accompanied with guarantees of
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not only collision avoidance but also achievement of a global objec-
tive. However GP’s are computationally expensive and hardly suit
real-time implementation; NP-hardness, a mathematical seal for
intractability, was established for even the simplest problems of
dynamic motion planning (Canny, 1988). A partial remedy was of-
fered in the form of randomized architectures (Frazzoli, Dahleh, &
Feron, 2002;Hsu, Kindel, Latombe, &Rock, 2002). At the same time,
the global planning approach faces significant difficulties when
the environmental map is uncertain and unpredictable. The above
drawbacks are shared by hybrid approaches that include GP as a
core of the navigation algorithm (Belkhouche & Belkhouche, 2005;
Belkhous, Azzouz, Saad, Nerguizian, & Nerguizian, 2005; Lamiraux,
Bonnafous, & Lefebvre, 2004; Minguez & Montano, 2004b; Qu,
Wang, & Plaisted, 2004b; Zhu, Zhang, Song, & Li, 2012).

Local planners (LP) iteratively re-plan a short-horizon portion
of the path. This weakens the computational burden towards im-
plementability in real time and reduces the need for information
about the environment to data about a nearest fraction of the scene,
butmakes the ultimate result of the iterations an open issue. Many
of the relevant techniques, e.g., the dynamicwindow (Fox, Burgard,
& Thrun, 1997; Seder, Macek, & Petrovic, 2005), curvature veloc-
ity (Simmons, 1996), and lane curvature (Nak & Simmons, 1998)
approaches, treat the obstacles as static. This is a particular case
of predictably moving obstacles, which are assumed, along with
access to their full velocities, by methods like velocity obstacles
(Fiorini & Shiller, 1998) and the likes (Snape, van den Berg, Guy, &
Manocha, 2011), collision cones (Chakravarthy & Ghose, 1998), or
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inevitable collision states (Fraichard & Asama, 2003; Owen &Mon-
tano, 2006). However velocity measurement remains a challeng-
ing task in practical setting, and predictability of the scene ranges
from full to none in the real world (LaValle, 2006). A medium level
of predictability is that with uncertainty, where non-conservative
estimates of future obstacle positions can be put in place of ex-
act prognosis (Large et al., 2005;Wu & How, 2012). However these
and some other approaches (Chakravarthy & Ghose, 1998; Fiorini
& Shiller, 1998; Fraichard & Asama, 2003; Owen &Montano, 2006)
take excessive precautions against collisions with obstacles. As a
result, they may be stuck in cluttered scenes, and tend towards
bypassing dense clusters of obstacles as a single whole, even if a
better or even the only option is a permeating route. In hardly pre-
dictable complex environments, safety typically concerns only a
nearest future, and its propagation until the end of the experiment
is not guaranteed (Wu & How, 2012).

The basic strong andweak points of LP’s attain apotheosis at re-
active controllers, which directly convert the current observation
into the current control. Some LP’s, like Virtual Force Field (Boren-
stein & Koren, 1989), Potential Field (Khatib, 1986; Rubagotti, Ve-
dova, & Ferrara, 2011), Vector FieldHistogram (Borenstein&Koren,
1991), Certainty Grid (Elfes, 1987), Nearness Diagram (Minguez &
Montano, 2004a) methods, in fact combine reactive control with
elements of global modeling by assuming awareness about the
scene above the level given by the snapshot of the sensory data.
Purely reactive approaches are exemplified by Chunyu, Qu, Pol-
lak, and Falash (2010), Ferreira, Pereira, Vassallo, Filho, and Filho
(2008), Kuc and Barshan (1989), Tang, Ang, Nakhaeinia, Karasfi,
and Motlagh (2013), Yagi, Nagai, Yamazawa, and Yachida (2001),
Yang andMeng (2001), as well as by biologically inspired methods
(Matveev, Hoy, & Savkin, 2013;Matveev, Teimoori, & Savkin, 2011;
Matveev, Wang, & Savkin, 2012; Savkin &Wang, 2013; Teimoori &
Savkin, 2010).

Because of inevitable failure scenarios, the deficiency of the pre-
vious research on LP’s is the lack of global convergence results that
guarantee achievement of the primary objective in dynamic en-
vironments (Nakhaeinia, Tang, Noor, & Motlagh, 2011). At best,
rigorous analysis examined an isolated bypass of an obstacle dur-
ing which the other obstacles were neglected until the bypass
ends, with an idea that thereafter, the robot focuses on the main
goal. However in cluttered dynamic scenes, bypasses may be sys-
tematically intervened by companion obstacles so that no by-
pass is completed, whereas the robot almost constantly performs
obstacle avoidance. The ultimate goal was left, by and large,
beyond the scope of theoretical analysis, especially for cluttered
unpredictable environments, like a dense crowd of people. How-
ever it is in these cases that rigorous quantitative delineation be-
tween failure and success scenarios is highly important since by
its own right, any experimentation is not convincing enough due
to horizonless diversity of feasible scenarios. Another deficiency is
thatmoving obstacleswere viewed as rigid bodies undergoing only
translational motions, and assumed awareness about the obstacles
often meant access to their possibly ‘invisible’ parts (e.g., to deter-
mine the disc center (Chunyu et al., 2010; Rubagotti et al., 2011) or
angularly most distant polygon vertex (Masehian & Katebi, 2007)
or full velocity (Chunyu et al., 2010; Masehian & Katebi, 2007;
Rubagotti et al., 2011)).

The objective of this paper is to show possibility of a purely
reactive navigation algorithm with the capacity of being supplied
with firm guarantees of achievement of a global objective in planar
environments densely cluttered with unpredictably moving and
deforming obstacles. This objective is perpetual drift in the desired
direction in spite of possibly almost continual obstacle avoidance.
Unlike the previous research, the obstacles are not rigid: they
have arbitrary time-varying shapes and may rotate, twist, wring,

skew, wriggle, etc. This covers scenarios with reconfigurable rigid
obstacles, forbidden zones between moving obstacles, flexible
obstacles, like a fluttered curtain or fishing net, virtual obstacles,
like areas contaminated with hazardous chemicals or on-line
estimated areas of operation of a hostile agent.

Our proposed navigation law uses omnidirectional vision of the
scene up to the nearest reflection point and, apart from access
to the desired azimuth, assumes no further sensing capacity or
knowledge of the scene configuration. Like some other algorithms,
it starts with finding points where the distance reading abruptly
jumps as the angle of measurement continuously varies, which are
interpreted as edges of visible facets of obstacles. In the vein of
Savkin andWang (2013), Teimoori and Savkin (2010), these facets
are angularly expanded. Finally to determine themotion direction,
we propose a certain trade-off between bearings at the edges of the
extended facets and the desired azimuth.

The navigation strategy considered in this paper develops some
ideas set forth in Savkin and Wang (2013), Teimoori and Savkin
(2010). However in Savkin and Wang (2013), Teimoori and Savkin
(2010), only rigid and fully visible obstacles were examined, which
were static in Teimoori and Savkin (2010) and disk-shaped in
Savkin and Wang (2013), and the scene was so sparse that by-
passes of obstacles were sufficiently isolated from each other. Now
we show that being properly developed, those ideas remain viable
for much more general scenarios with dense scenes and deform-
ing obstacleswith arbitrary shapes.We first offer amathematically
rigorous justification of the proposed approach. In doing so, we
start with conditions necessary for a robot to be capable of obstacle
avoidance in scenarios likemotionwithin a dense crowd of people.
Thenwe show that under a slight enhancement of these conditions,
obstacle avoidance is ensured by the proposed controller provided
that it is properly tuned. Success in following the desired azimuth
is proved for convex obstacles undergoing generalmotions, includ-
ing translations, rotations, anddeformations. By illustrating this re-
sult in several particular scenarios, it is better displayed that the
algorithm does cope with densely cluttered dynamic scenes. The
applicability of the proposed strategy is confirmed via extensive
computer simulations. In doing so, its performance has been com-
pared with that of the velocity obstacle approach (Fiorini & Shiller,
1998; Large et al., 2005) and found to be better under certain cir-
cumstances.

The body of the paper is organized as follows. Sections 2 and 3
describe the problem setup and the navigation strategy, whereas
the main results concerned with collision avoidance and the main
control objective are given in Sections 4 and 5, respectively.
In Section 6, they are illustrated in special scenarios. Section 7
discusses simulations and Section 8 offers brief conclusions. The
proofs are given in Appendices A–C.

The following notations are adopted in the paper:

⟨·; ·⟩—the standard Euclidian inner product in R2;
| · |—the standard Euclidian norm in R2;
distO[r]—the distance from point r to the set O;
O1(t), . . . ,ON(t)—moving obstacles;
∂O—the boundary of the set O;
C1, . . . , CK—disjoint classes of the obstacles;
vi
o—an upper bound on the speeds of all obstacles from Ci;

v⃗—the velocity of the robot;
v—an upper bound on its speed;
d—the distance from the robot to the nearest obstacle;
d(α, t)—the distance to the nearest obstacle in the direction
given by the polar angle α (see Fig. 1);
f⃗—the unit vector in the desired direction of motion.
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